

1° CORSO NAZIONALE DI AGGIORNAMENTO Associazione Medici Endocrinologi

IPER[CORSI]AME

TIROIDE (1)

Citologia tiroidea e biologia molecolare: fra classificazioni e azioni cliniche

Moderatori

H. Gharib, E. Papini

- Classificazioni citologiche: verso uno schema internazionale unificato?
 A. Crescenzi
- Problemi aperti
 - Microistologia: come quando e perché?
 P. Trimboli
 - Biologia molecolare su agoaspirato tiroideo: ready for prime time? *G. Fadda*
- Gene expression classifiers: cost and efficacy H. Gharib
- Dal caso clinico all'azione, discussione guidata: Speaker A. Frasoldati Discussants F. Nardi, M. Torlontano
- Take-home messages H. Gharib, E. Papini

Clinical Case 1.

•Marta, age 31

•Chronic autoimmune thyroiditis (thyroid screening during pregnancy)

•TSH 3.5 uU/ml, TPOAb 366 U/ml.

•L-thyroxine treatment: 50 ug/day

•Six month after delivery: thyroid US examination.

16 mm Ø hyso-hypoechoic nodule, inhomogeneous texture, slightly irregular margins, peripheral and interval vascularization.

Clinical Case 1. FNA report (1)

<u>Non diagnostic</u> (blood contamination, scant thyrocyte aggregates, scarce colloid).

SIAPEC Reporting system: "TIR 1"

Which are the reasons for a "non diagnostic" thyroid FNA ? Possible solutions?

Tir-1 occurrence depends upon the characteristics of the lesion, technical factors, and on the operators' experience.

- *inadequate*": smearing and/or fixing and/or staining artefacts or blood obscure thyroid cell aggregates
- "non representative": a number of epithelial cells, insufficient for a definitive diagnosis, is collected from the nodule or the sample is not consistent with the target thyroid lesion.

The cytological report should specify if the sample is inadequate or non representative

Nodule structure and rate of TIR 1

Cystic content	No.	Nondiagnostic UG-FNA n (%)
Solid	674	$54 \ (8)^a$
${<}25\%$ cystic	329	21(6)
25–50% cystic	142	17(12)
50-75% cystic	104	26(25)
>75% cystic	199	71(36)
Total	1448^{b}	189 (13)

The only predictive factor for TIR 1 is a nodule with a > 50% cystic component

Alexander et al., J Clin Endocrinol Metab, 2002, 87(11):4924–4927

Samples obtained from a cystic lesion featuring erythrocytes, necrosis and hemosiderin-laden macrophages without adequate cellularity should be subclassified as TIR 1 C (Cystic)

TIR 2 may be adopted in spite of uncomplete sample adequacy/representativeness in case of :

- Abundant and homogeneous colloid aspirated from colloid ("spongiform" at US) nodules or from lesions identified at ultrasonography as cysts;
- Predominant lymphocytic component in a clinically diagnosed Hashimoto thyroiditis
- Cytological pattern consistent with De Quervain thyroiditis

What is the expected rate of "non diagnostic" FNA ?

Is FNA repetition useful after a TIR 1 result?

- Tir 1: 5-20% of FNAs
- Ideally, the inadequate reports (TIR 1) should not exceed 10% (out of cystic lesions)
- Diagnostic sample after FNA repetition: 47-75%: (Chow 2001, Alexander 2002, Piana 2011, Samir 2012)
- Higher percentage of diagnostic result when FNA is performed under US guidance and/or with on-site adequacy assessment.

Comparison of 5-Tiered and 6-Tiered Diagnostic Systems for the Reporting of Thyroid Cytopathology: A Multi-Institutional Study

5-Tiered		6-Tiered	(Bethesda)
TIR 1	7.5	3.0	DCI
TIR 2	83.9	55.4	DCII
TIR 3	4.6	6.7	DCIII (FLUS/AUS)
		23.8	DCIV(FN)
TIR 4	1.1	6.0	DCV
TIR 5	2.9	5.1	DCVI
Total	3962	3724	

Bongiovanni et al., Cancer Cytopathology 2012

Diagnostic categories and clinical management according to the Bethesda system

Diagnostic category	Cytological diagnosis	Risk of malignancy, %	Usual management
Ι	nondiagnostic or unsatisfactory	1-4	repeat FNA with ultrasound guidance
II	benign	0-3	clinical follow-up
III	AUS/FLUS	5–15	repeat FNA
IV	FNS/SFN	15-30	surgical lobectomy
V	suspicious for malignancy	60-75	near-total thyroidectomy or surgical lobectomy
VI	malignant	97–99	near-total thyroidectomy

Bongiovanni et al. Acta Cytologica 2012; 56:333-339

Diagnostic samples with repeated FNA

Samir et al. (This study))	
Cystic vs. solid	Repeat diagnostic FNA (%)	
Solid $n = 50$ Predominantly solid (<25% cystic) $n = 28$ Mixed (25%–75% cystic) $n = 8$	48 36 38	
Predominantly cystic (>75% cystic) $n=3$ Total $n=89$	67 43	
	Alexander et	al. (13)
	Cystic vs. solid	Repeat diagnostic FNA (%)
	Solid $n=54$ < 25% cystic $n=21$ 25%-50% cystic $n=17$ 50%-75% cystic $n=26$ > 75% cystic $n=71$ Total $n=189$	76 85 60 54 48 62

THYROID Volume 22, Number 5, 2012, pp 461-467

AE

What is the risk of malignancy in a TIR 1 nodule?

Comparison of 5-Tiered and 6-Tiered Diagnostic Systems for the Reporting of Thyroid Cytopathology: A Multi-Institutional Study

5-Tier sy	/stem		6-Tier system (Bethesda		hesda)
	surgery	malignancy	surgery	malignancy	
TIR 1	5.4	25.0	22.7	32.0	DCI
TIR 2	2.9	3.1	7.7	2.5	DCII
TIR3	56.4	26.5	53.2 78.8	14.4 32.1	DCIII (FLUS - AUS) DCIV (FN)
TIR 4	92.9	92.3	81.7	74.9	DCV
TIR 5	94.7	99.1	84.4	99.4	DCVI
Total	9.1	48.9	36.5	41.0	

Bongiovanni et al., Cytopathology 2012

Cytological diagnosis All FNAs All FNAs with histolo follow-up		ogical	Benign histolog	зу	Maligna histolog	int SY			
	n	% total	n	% total ^a	% category ^b	n	% ^c	n	% ^c
Nondiagnostic	3,271	12.9	530	8.3	16.2	441	83.2	89	16.8
Benign	15,104	59.3	1,563	24.6	10.4	1,505	96.3	58	3.7
AUS/FLUS	2,441	9.6	957	15.0	39.2	805	84.1	152	15.9
FN/SFN	2,571	10.1	1,791	28.2	69.7	1,323	73.9	468	26.1
Suspicious for malignancy	680	2.7	501	7.9	73.7	124	24.8	377	75.2
Malignant	1,378	5.4	1,020	16.0	74.0	14	1.4	1,006	98.6
Total	25,445	100	6,362	100	25.0	4,212	66.2	2,150	33.8

^a Percentage of the 6,362 cases with follow-up. ^b Percentage of cases operated in each DC. ^c Percentage of cases calculated of the total number of operated cases in each category.

Bongiovanni et al. Acta Cytologica 2012; 56:333-339

Timing of FNA repetition: is it critical for a diagnostic sample?

Are there any practical tricks to avoid a 2nd non diagnostic FNA?

What to do if FNA repetitionreiterates a non diagnostic result?Always surgery?

FNA repetition vs. CNB in non diagnostic samples

	n. pts	FNA II°	CNB
		(% diagnosis)	(% diagnosis)
Samir et al., 2012	69	52.0	74.0
Na et al., 2012	45	54.7	87.5

US patterns in partially cystic thyroid nodules

	Benign	Malignant
Configuration	Concentric/eccentric with blunt angle	Eccentric with acute angle
Margins	Smooth, regular	Lobulated, irregular
Vascularity	Peripheral or absent	Centripetal
Solid component	Spongiform, isoechoic	Microcalcification

Kim et al., AJR 2011; 197:1213-121

Clinical Case 1. FNA report (2)

Follicular and microfollicular aggregates of thyroid cells, with mild anysocariosis. Scarce colloid.

Clinical Case 1. FNA report (2)

Cytological pattern feasibile with follicular neoplasm. SIAPEC Reporting system "TIR 3"

According to the updated Italian Consensus on Thyroid cytology proposal, how should this cytological pattern be classified?

Follicular lesion

morphology: nuclear size/colloid

Kini 2009

TIR 3 includes

•Follicular neoplasms i.e. cytologic specimens with high cellularity, predominant microfollicular arrangement and poor/absent colloid component. Samples consisting almost exclusively of Hurthle/oxyphilic cells are included in this category.

Microfollicular/Hurthle cells patterns with moderate colloid amount, and degenerative/regressive features more likely observed in non neoplastic lesions.
 Partially compromised specimens (i.e. low cellularity and/or blood contamination) with mild cytological or architectural alterations that may rise some suspicion of malignancy.

•Cytological alterations suspicious for malignancy, yet too scarce to be classified as TIR 4.

(III)

(IV)

Bethesda System

Atypia of undetermined significance (AUS) and Follicular lesion of undetermined significance (FLUS) Follicular Neoplasms

SIAPEC-SIE-AIT (2013)

- Tir 3a Follicular lesions with moderate colloid/minor cytological alterations (lower risk of malignancy)
- Tir 3b Follicular neoplasms/ suspicious nuclear atypia too scarce to be included in Tir4 (higher risk of malignancy)

What is the correlation between cytological and histological diagnosis in follicular neoplasms?

May CNB help do define the risk of malignancy in follicular neoplasms?

The TIR 3 challenge: definitions

Indeterminate (TIR 3) lesions are a moving target...

Follicular neoplasms: cyto-histological correlations

	Rago et al., 2007	Yang et al., 2007	
Thyroiditis	4 (0.8%)	11 (3.4%)	1.8%
Goiter	52 (10.3%)	53 (16.3%)	12.6%
Follicular /Hürtle cell Adenoma	290 (57.4%)	157 (48.2%)	53.8%
PTC	138 (27.3%)	71 (21.8%)	25.1%
Follicular /Hürtle cell Carcinoma	21 (4.1%)	29 (8.9%)	6.0%
Other malignancy	-	5 (1.5%)	0.6%
Total	505	326	

Results of FNA repetition vs. CNB in "indeterminate" samples

	n. pts	FNA II°	CNB
		(% diagnosis)	(% diagnosis)
Park et al., 2011	142 (FNA) 54 (CNB)	51.4	98.2
Na et al., 2012	104	50.1	73.3
Nasrollah et al., 2012	40	_	47.5

Molecular markers as "magic bullets" in TIR 3 lesions: clinical science or science-fiction?

What about BRAF?

How to manage patients with follicular neoplasms: always surgery?

Galectin-3 in the diagnosis of Follicular Thyroid Cancer

Sensitivity 74-100% Specificity 75-100% Accuracy 88-100%

Chiu et al., Am J Pathol, Vol. 176, No. 5, May 2010

Results of molecular testing in Thy-3 lesions (n = 878) from 6 different studies (2010-2012)

		PTC	FTC/HCC	FA/HCA	NH
BRAF	+	34	0	0	0
	-	141	25	235	433
RAS	+	55	7	13	0
	-	83	12	231	378
RET/PTC	+	4	0	0	0
	-	80	19	153	378
ΡΑΧ8/ΡΡΑRγ	+	4	-	0	0
	-	94	9	122	348

Mutation analysis positive in ~60% of malignant and ~2.0% of benign lesions

 High specificity and low sensitivity of mutation analysis in detecting malignant Thy-3 lesions

Moses et al. World J Surg. 2010, 34: 2589–2594; Cantara et al. J Clin Endocrinol Metab, 2010, 95:1365-1369; Ohori et al., Cancer Cytopathology, 2010, 118: 17-23; Nikiforov et al., 2011, JCE&M 96:3390-3397; Canadas Garre et al, Ann Surg, 2012 255:986-992. Zatelli et al. JCE&M, 2012

103 patients with FN referred for thyroidectomy,

22 (21%) found to have a malignancy.

Risk of malignancy was significantly higher

- in males
- in nodule greater than 4 cm
- in solitary nodules

(43% vs. 16% p = 0.007), (40% vs. 13% p = 0.03), (25% vs. 6%, p = 0.02).

Risk of malignancy in males with large nodules was nearly 80%, compared with a rate of only 3% in females with small nodules

Tuttle et al, Thyroid 1998 May;8(5):377-83

US findings in a series of 137 follicular neoplasms

Sensitivity90.9%Specificity29.8%PPV29.1%NPV91.2%False negative rate9.1%False positive rate71.2%Accuracy44.5%

53% of malignant-appearing nodules at US corresponding to FTC or follicular variant of PTC at histological examination

Benign FN 104 (NH = 72 FA = 32)

Malignant FN 33 (FTC min inv n = 18 FTC wid inv n = 10, PTC n = 5)

M. Kihara et al. / Auris Nasus Larynx 38 (2011) 508-511

Case 1. Question time: round 4.

Will the Gene classifier systems change the routine clinical practice in the U.S.?

Cost-Effectiveness of a Novel Molecular Test for Indeterminate Thyroid Nodules

Clinical THYROIDOLOGY

VOLUME 24 • ISSUE 8

AUGUST 2012

A Gene-Expression Classifier on FNA Biopsy of a Thyroid Nodule May Be Helpful to Determine Whether an Indeterminate Nodule Is Benign

Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, Livolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL, Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. June 25, 2012 [Epub ahead of print]. 81 FN
GEC suspicious in
18/20 malignant
31/61 benign
PPV = 36.7%

NPV = 93.7%

Clinical case 2.

Giulia, age 34 Dermatologist Incidental finding of a 5 mm hypoechoic nodule with calcifications in the right thyroid lobe

Clinical case 2: FNA report

US guided FNA: Solid aggregates of epithelial cells with occasional nuclear grooves and indentations. No evidence of nuclear inclusions.

Clinical case 2: FNA report

Cytology: Indeterminate SIAPEC Reporting system classification: not provided

Question time: round 5.

How would you classify this lesion?

(III)

(IV)

Bethesda System

Atypia of undetermined significance (AUS) and Follicular lesion of undetermined significance (FLUS) Follicular Neoplasms

SIAPEC-SIE-AIT (2013)

- Tir 3a Follicular lesions with moderate colloid/minor cytological alterations (lower risk of malignancy)
- Tir 3b Follicular neoplasms/ suspicious nuclear atypia too scarce to be included in Tir4 (higher risk of malignancy)

Question time: round 5.

What would you recommend:

- Repeat FNA ?
- Molecular markers ?
- Surgery, anyway?

FNA repetition in AUS

Repeated Fine-Needle Aspiration Diagnosis Following an Initial Diagnosis of Atypia of Undetermined Significance ~50% of Benign Diagnosis No. (%) of Cases at II° FNA Benign 139 (48.4) Atypia of undetermined significance 80 (27.9) ~10% of Suspicious or Suspicious for malignancy 26 (9.1) Suspicious for a follicular/Hürthle cell neoplasm 25 (8.7) **Malignant at II° FNA** Malignant 5(1.7)Nondiagnostic 12(4.2)Total 287 (100.0)

Surgical Outcome After Initial AUS Diagnosis Stratified by Repeated FNA Diagnosis^{*}

Repeated FNA Diagnosis	No. of Cases	Benign	Malignant
No repeated FNA	90 (45.2)	53 (59)	37 (41)
AUS	51 (25.6)	29 (57)	22 (43)
Benign	7 (3.5)	5 (71)	2 (29)
Nondiagnostic	2 (1.0)	2 (100)	0 (0)
Suspicious for a follicular/Hürthle cell neoplasm	22 (11.1)	13 (59)	9 (41)
Suspicious or positive for malignancy	27 (13.6)	6 (22)	21 (78) [†]
Total	199	108 (54.3)	91 (45.7)

FNA repetition does not apparently influence the rate of malignancy (50-60%) at surgery...

Vanderlan et al. Am J Clin Pathol 2011;135:770-775

Molecular testing in indeterminate AUS/FLUS and FN lesions

Atypia of undetermined significance/Follicular lesions of undetermined significance (AUS/FLUS) (n=247)

	Histology Malignant (n=35)	Histology Benign (n=212)		
Mutation Positive (n=25)	16 RAS (16 PTC,FV) 5 BRAF (4 PTC, 1 PTC,FV) 1 PAX8/PPARg (1 PTC,FV)	3 <i>RAS</i> (3 FA)	Sensitivity 63% Specificity 99% PPV 88% NPV 94%	
Mutation Negative (n=222)	13 (11 PTC, FV, 2 PTC)	209 (166 HN, 43 FA)	Accuracy	94%

84.9% and 100% rate of malignancy among RAS+ and BRAF+ lesions, respectively

Follicular or Hürthle cell neoplasm/Suspicious for follicular neoplasm (FN/SFN) (n=214)

	Histology Malignant (n=58)	Histology Benign (n=156)		
Mutation Positive (n=38)	2 BRAF (1 PTC, 1 PTC,FV) 29 RAS (21 PTC,FV, 5 PTC, 3 FTC) 2 PAX8/PPARg (2 PTC,FV)	5 <i>RAS</i> (5 FA)	Sensitivity 57% Specificity 97% PPV 87% NPV 86%	
Mutation Negative (n=176)	25 (16 PTC,FV, 3 PTC, 6 FTC)	151 (95 HN, 56 FA)	Accuracy	86%

11.4% rate of malignancy among RAS and BRAF negative lesions

Nikiforov Y E et al. JCEM 2011;96:3390-3397

Question time: round 5.

BRAF mutation analysis on Giulia's FNA sample was positive.

•What does the presence of BRAF mutation mean?

BRAF mutation analysis may change the surgical planning ?

BRAF Mutation analysis in thyroid nodules

Thy-3

		PTC	FTC/HCC	FA/HCA
BRAF	+	34	0	0
	-	141	25	678
Soncitivity $= 17.0\%$ Specificity $= 10.0\%$				

Sensitivity = 17.0% Specificity = 100%

Thy-4/Thy-5

		PTC	FA/Hyperplasia
BRAF	+	111	0
	-	116	35

Sensitivity = 48.9% Specificity = 100%

Moses et al. World J Surg. 2010, 34: 2589–2594; Cantara et al. JCE&M, 2010, 95:1365-1369; Ohori et al., Cancer Cytopathol, 2010, 118: 17-23; Nikiforov et al., JCE&M 2011; 96:3390-3397; Canadas Garre et al, Ann Surg, 2012 255:986-992; Zatelli et al. JCE&M, 2012

Algorithm for patients with indeterminate FNA based on the results of mutational analysis.

Nikiforov Y E et al. JCEM 2011;96:3390-3397

Risk stratification of indeterminate lesions based on mutation analysys

Positive mutation analysis Risk of malignancy = 92%

emithyroidectomy in case of mutation – lesions

total thyroidectomy as initial surgery in case of mutation + lesion

Filicori et al., Surgery 2011

Mutation analysis in the Clinical Decision Making

Thy-3 lesions

Clinical and US findings*	Mutation analysis +	Mutation analysis -
Low risk	Lobectomy	Wait and see
High/intermediate risk	Total thyroidectomy (+CND)	Lobectomy

Thy-4 lesions

Clinical and US findings*	Mutation analysis +	Mutation analysis -
Not critical	Total thyroidectomy + CND	Lobectomy + Frozen section

* Include lesion size, US features, controlateral lobe appearance, patient's age/gender

Giulia underwent right emithyroidectomy plus right central neck dissection.

Histology: papillary microcarcinoma (G1 pT1pN0pMx)

And now the take-home messages!

