7-10 novembre 2013, Barl

12° Congresso Nazionale AME 6th Joint Meeting with AACE

Update in Endocrinologia Clinica

Symposium 13 Molecular markers in thyroid cancer: current role in clinical practice

BRAF in the diagnostic evaluation of thyroid nodules

Follicular cell

BRAF prevalence

Table 1. Demographic Characteristics, BRAF V600E Mutation, and Follow-up Time of Patients by Medical Center and Country

		Age at		BRAF	PTC-Re	lated Death	is, No. (%)	Follov Median (w-up, IQB), mo
	No. of Patients	Diagnosis, Median (IQR), y	Male, No. (%)	V600E Mutation, No. (%)	All	<i>BRAF</i> V600E– Positive	BRAF V600E– Negative	All Patients	Survivors
By medical center Johns Hopkins Hospital	387	45 (35-57)	101 (26.1)	151 (39.0)	8 (2.1)	8 (5.3)	0	12 (1-30)	12 (1-28)
University of Pittsburgh	169	52 (38-63)	42 (24.8)	101 (59.8)	1 (0.6)	1 (1.0)	0	19 (11-26)	19 (11-26)
Memorial Sloan-Kettering Cancer Center	135	50 (35-63)	44 (32.6)	64 (47.4)	11 (8.2)	10 (15.6)	1 (1.4)	96 (1-144)	90 (1-144)
University of Pisa	189	38 (28-51)	47 (24.9)	65 (34.4)	9 (4.8)	6 (9.2)	3 (2.4)	72 (24-180)	84 (24-180)
University of Perugia	117	49 (37-59)	32 (27.4)	76 (65.0)	5 (4.3)	2 (2.6)	3 (7.3)	22 (6-39)	22 (6-40)
University of Milan	110	42 (34-55)	24 (21.8)	38 (34.6)	1 (0.9)	0	1 (1.4)	48 (24-64)	48 (24-64)
University of Padua	135	48 (39-57)	32 (23.7)	87 (64.4)	1 (0.7)	1 (1.2)	0	26 (22-30)	26 (22-30)
Kanagawa Cancer Center	49	55 (41-65)	16 (32.6)	33 (67.4)	9 (18.4)	7 (21.2)	2 (12.5)	68 (31-78)	65 (33-76)
Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology	99	49 (33-59)	10 (10.1)	42 (42.4)	1 (1.0)	1 (2.4)	0	48 (42-53)	48 (43-53)
Griffith Medical School	76	40 (34-56)	20 (26.3)	34 (44.7)	0	0	0	42 (4-82)	42 (4-82)
University of Sydney	95	44 (34-59)	20 (21.0)	55 (57.9)	5 (5.3)	5 (9.1)	0	103 (63-135)	104 (64-137)
Hospital La Paz, Health Research Institute	66	42 (32-54)	11 (16.7)	28 (42.4)	2 (3.0)	1 (3.6)	1 (2.6)	41 (30-57)	42 (30-57)
Institute of Endocrinology, Prague	222	47 (31-60)	39 (17.6)	71 (32.0)	3 (1.4)	3 (4.2)	0	50 (30-85)	50 (30-85)
By country United States	691	47 (36-59)	187 (27.1)	316 (45.7)	20 (2.9)	19 (6.0)	1 (0.3)	17 (2-36)	16 (2-32)
Italy	551	44 (34-56)	135 (24.5)	266 (48.3)	16 (2.9)	9 (3.4)	7 (2.5)	33 (20-70)	34 (20-72)
Japan	49	55 (41-65)	16 (32.6)	33 (67.4)	9 (18.4)	7 (21.2)	2 (12.5)	68 (31-78)	65 (33-76)
Poland	99	49 (33-59)	10 (10.1)	42 (42.4)	1 (1.0)	1 (2.4)	0	48 (42-53)	48 (43-53)
Australia	171	43 (34-57)	40 (23.4)	89 (52.0)	5 (2.9)	5 (5.6)	0	75 (32-118)	76 (33-118)
Spain	66	42 (32-54)	11 (16.7)	28 (42.4)	2 (3.0)	1 (3.6)	1 (2.6)	41 (30-57)	42 (30-57)
Czech Republic	222	47 (31-60)	39 (17.6)	71 (32.0)	3 (1.4)	3 (4.2)	0	50 (30-85)	50 (30-85)
Overall	1849	46 (34-58)	438 (23.7)	845 (45.7)	56 (3.0)	45 (5.3)	11 (1.1)	33 (13-67)	33 (13-65)

Abbreviation: IQR, interquartile range.

Xing et al., JAMA 2013

Modifications in the Papillary Thyroid Cancer Gene Profile Over the Last 15 Years

Cristina Romei,* Laura Fugazzola,* Efisio Puxeddu, Francesco Frasca, David Viola, Manna Muzza, Sonia Moretti, Mana Luisa Nicolosi, Carlotta Giani, Valentina Cirello, Nicola Avenia, Stefania Rossi, Paolo Vitti, Aldo Pinchera, and Rossella Elisel

BRAF on FNAB specimens: first studies

B-RAF V600E

Cohen et al., Clin Cancer Res 2004

TABLE 2. Summary of BRAF mutation data on preoper	ative
thyroid FNAB specimens (per colorimetric assay)	

Pathological diagnosis	Mutation/total	46
Papillary cancer	8/16	50
Follicular cancer	0/5	0
Hurthle cell carcinoma	0/1	0
Benign lesions	0/21	0
Metastatic renal cancer	0/1	0
Indeterminate lesion (not operated)	0/1	0

	BRAF V599E mutation positivity	RET/PTC rearrangemen	ts^a
Histology			
Papillary carcinoma	26/69 (38%)	6/33 (18%)	
Classic variant	16/35 (45%)	4/13 (30%) (3 I and 1 PTC	PTC1 3)
Follicular variant	3/22 (14%)	1/15 (6%) (PT	VC1)
Tall-cell variant	5/9 (55%)	1/5 (20%) (PT	(C3)
Diffuse-sclerosing variant	2/3 (66%)		57577¥1
Adenoma	0/19	0/19	
Microfollicular	0/5	0/5	_
Micro- or macrofollicular	0/9	0/9	refinement of
Trabecular	0/1	0/1	
Hurthle	0/4	0/4	diaanosis
Goiter	0/8	0/8	
Multinodular	0/8	0/8	in 5/15 samples
Indeterminate/insufficient samples	127 million		
Papillary carcinoma	4/15 (27%)	1/15 (7%)	
Classic variant ^b	2/7 (29%)	1/7(14%)	
Follicular variant	1/6 (17%)	0/6	
Sclerosing variant	1/2(50%)	0/2	
Tumor stage (PTC) ^c	65434765948A		
T1	4/10 (40%)	2/5(40%)	
T2	12/29 (41%)	2/14 (14%)	
T3-T4	7/19 (37%)		
Gender (PTC)			
Male	11/23 (47%)	2/13 (15%)	
Female	15/46 (33%)	4/20 (20%)	
Age (PTC)	10000000000000000000000000000000000000		
<40 yr	14/37 (38%)	2/15 (13%)	
>40 yr	12/32 (37%)	4/18 (22%)	
Node metastasis $(PTC)^{\vec{d}}$			
Yes	5/13 (38%)	1/6 (16%)	
No	8/15 (53%)	1/7(14%)	

TABLE 1. Molecular analysis of thyroid FNA

Salvatore et al., JCE&M 2004

THYROID Volume 19, Number 11, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2009.0110

ORIGINAL STUDIES, REVIEWS, AND SCHOLARLY DIALOG

THYROID CANCER AND NODULES

Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer

The American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer

David S. Cooper, M.D.¹ (Chair)*, Gerard M. Doherty, M.D.,² Bryan R. Haugen, M.D.,³ Richard T. Kloos, M.D.,⁴ Stephanie L. Lee, M.D., Ph.D.,⁵ Susan J. Mandel, M.D., M.P.H.,⁶ Ernest L. Mazzaferri, M.D.,⁷ Bryan McIver, M.D., Ph.D.,⁸ Furio Pacini, M.D.,⁹ Martin Schlumberger, M.D.,¹⁰ Steven I. Sherman, M.D.,¹¹ David L. Steward, M.D.,¹² and R. Michael Tuttle, M.D.¹³

Indeterminate cytology

Many molecular markers (e.g., galectin-3, cytokeratin, BRAF) have been evaluated to improve diagnostic accuracy for indeterminate nodules. Recent large prospective studies have confirmed the ability of genetic markers (BRAF, Ras, RET/PTC) and protein markers (galectin-3) to improve preoperative diagnostic accuaracy for patients with indeterminate thyroid nodules. Many of these markers are available for commercial use in reference laboratories but have not yet been widely applied in clinical practice.

It is likely that some combination of molecular markers will be used in the future to optimize management of patients with indeterminate cytology on FNA specimens.

American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules

H. Gharib, E. Papini, R. Paschke, D.S. Duick, R. Valcavi, L. Hegedüs, and P. Vitti; for the AACE/AME/ETA Task Force on Thyroid Nodules*

Task Force Committee members: S. Tseleni Balafouta, Z. Baloch, A. Crescenzi, H. Dralle, R. Gärtner, R. Guglielmi, J.I. Mechanick, C. Reiners, I. Szabolcs, M.A. Zeiger, and M. Zini

Indeterminate cytology

....molecular and immunohistochemical markers may improve the accuracy of cytologic diagnosis, but they do not have consistent predictive value for malignancy and their use is still expensive and restricted to specialized centers. <u>On the basis of current limited evidence, their routine use in clinical practice</u> <u>is not recommended and should be deserved for selected cases.</u>

Nikiforov et al., JCE&M 2009

Cytology (n=235)	Mutation (in cytology)	Histology
Suspicious	BRAF 21	PTC 21
for	RET/PTC 6	PTC 6
Cancer	RAS 10	PTC 10
(n=54)	None 17	PTC 9 FA 4 Hyperplastic 4
	BRAF 2	PTC 2
	RET/PTC 2	PTC 2
Benign	RAS 5	PTC 2 FA 3
(87)	None 78	PTC 2 FTC 1 FA 10 Hyperplastic 65
	BRAF 2	PTC 2
	RET/PTC 2	PTC 2
Indetermin	RAS 3	PTC 2 FA1
(n=41)	None 34	PTC 1 FA 25 Hyperplastic 8
	BRAF 8	PTC 8
	RET/PTC 1	PTC 1
Inadequate	RAS 5	PTC 2 HCC 1 FA 2
(n=53)	None 39	PTC 2 FTC 2 FA 11 Hyperplastic 24

41 indeterminate 7 PTCs at histology 7 (2 BRAF, 2 RET/PTC, 2 RAS)

mutations in 28.5% cytological samples (235 nodules)

Ŀ,

34.3% ras

49.3% Braf

16.4% ret/PTC

cancer in 74% histological samples

cancer in 100% histological samples

Cantara et al., 2010

High diagnostic performance of combined cytology and molecular analysis

TABLE 1. Diagnostic performance of cytology, molecular analysis, or a combination of both

	Diagnostic modality	Sensivity TP/TP+FN (%)	Specificity TN/FP+TN (%)	PPV TP/TP+FP (%)	NPV TN/TN+FN (%)	Accuracy TP+TN/All (%)
_	Cytology (positive for malignancy)	59.0	94.9	85.2	82.3	83.0
	Molecular analysis (mutation in malignancy) ^a	78.2	96.2	91.0	89.9	90.2
	Molecular analysis (mutation in malignancy) ^b	79.8	100	100	89.9	92.8
	Cytology and molecular analysis ^a	89.7	94.9	89.7	94.9	93.2
	Cytology and molecular analysis ^b	90.5	98.7	97.4	94.9	95.7

TP, True positive; TN, true negative; FN, false negative; FP, false positive.

" Mutated follicular adenomas computed as false positive.

^b Mutated follicular adenomas computed as true positive.

Atypia of unde	termined significance/Follicula (AUS/FLUS) (nr lesions of undetermin (n=247)	ed significance
	Histology Malignant (n=35)	Histology Benign (n=212)	
Mutation Positive (n=25)	16 RAS (16 PTC,FV) 5 BRAF (4 PTC, 1 PTC,FV) 1 PAX8/PPARg (1 PTC,FV)	3 RAS (3 FA)	Sensitivity 63% Specificity 99% PPV 88% NPV 94%
Mutation Negative (n=222)	13 (11 PTC, FV, 2 PTC)	Accuracy 94%	
Follicul	ar or Hürthle cell neoplasm/Su (FN/SFN) (n	spicious for follicular n =214)	eoplasm
	Histology Malignant (n=58)	Histology Benign (n=156)	
Mutation Positive (n=38)	2 BRAF (1 PTC, 1 PTC,FV) 29 RAS (21 PTC,FV, 5 PTC, 3 FTC) 2 PAX8/PPARg (2 PTC,FV)	5 RAS (5 FA)	Sensitivity 57% Specificity 97% PPV 87% NPV 86%
Mutation Negative (n=176)	25 (16 PTC,FV, 3 PTC, 6 FTC)	151 (95 HN, 56 FA)	Accuracy 86%
	Suspicious for malignant	cells (SMC) (n=52)	-
	Histology Malignant (n=28)	Histology Benign (n=24)	
Mutation Positive (n=20)	10 BRAF (10 PTC) 7 RAS (6 PTC,FV, 1 FTC) 1 PAX8/PPARg (1 FTC) 1 RET/PTC (1 PTC)	1 RAS (1 FA)	Sensitivity 68% Specificity 96% PPV 95% NPV 72% Accuracy 81%
Mutation Negative (n=32)	9 (7 PTC, 2 PTC,FV)	23 (17 HN, 6 FA)	

Nikiforov et al., 2011

clinical algorithm for management of patients with cytologically indeterminate thyroid FNA applying the results of mutational analysis

Nikiforov et al., JCE&M 2011

The Asuragen miRInform Molecular Panel

	DNA Mut	iation Markers		RNA inston transcri
KRAS	BRAF	HRAS	NRAS	RET/PTC1
G12R	V600E	Q61L	Q61R	RET/PTC3
G12V		Q61R	Q61K	PAX8/PPARg
G13D		G12V	Q61L	
G12D				
G12A				
G12C				
G125				

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Preoperative Diagnosis of Benign Thyroid Nodules with Indeterminate Cytology

Erik K. Alexander, M.D., Giulia C. Kennedy, Ph.D., Zubair W. Baloch, M.D., Ph.D., Edmund S. Cibas, M.D., Darya Chudova, Ph.D., James Diggans, Ph.D.,
Lyssa Friedman, R.N., M.P.A., Richard T. Kloos, M.D., Virginia A. LiVolsi, M.D., Susan J. Mandel, M.D., M.P.H., Stephen S. Raab, M.D., Juan Rosai, M.D.,
David L. Steward, M.D., P. Sean Walsh, M.P.H., Jonathan I. Wilde, Ph.D.,
Martha A. Zeiger, M.D., Richard B. Lanman, M.D., and Bryan R. Haugen, M.D.

Alexander et al., NEJM 2012

multiple steps and multiple days to run the Afirma Gene Expression Classifier

Chudova et al, JCE&M 2010; Image Source: Affymetrix®

GEC result	Malignant reference standard (N=85)	Benign reference standard (N=180)
Suspicious	78	87
Benign	7	93
Sensitivity, 92% NPV, 93% (86–9	(84–97); specificity, 52% (44– 7); prevalence of malignant le	59); PPV, 47% (40–55); sions, 32%
pia of Undetermine Significance (N=129	d Significance or Follicular L 9, 48.7%)	esion of Undetermine.
GEC result	Malignant reference standard (N=31)	Benign reference standard (N=98)
Suspicious	28	46
Benign	3	52
Sensitivity, 90% NPV, 95% (85–9 llicular or Hürthle-C N=81, 30.6%)	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or <mark>Suspicious</mark>	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplas
Sensitivity, 90% NPV, 95% (85–9 llicular or Hürthle-C N=81, 30.6%) GEC result	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20)	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplas Benign reference standard (N=61)
Sensitivity, 90% NPV, 95% (85–9 Ilicular or Hürthle-C N=81, 30.6%) GEC result Suspicious	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20) 18	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplas Benign reference standard (N=61) 31
 Sensitivity, 90% NPV, 95% (85–9 llicular or Hürthle-C N=81, 30.6%) GEC result Suspicious Benign 	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20) 18 2	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplas Benign reference standard (N=61) 31 30
Sensitivity, 90% NPV, 95% (85–9 Ilicular or Hürthle-C N=81, 30.6%) GEC result Suspicious Benign Sensitivity, 90% NPV, 94% (79–9	 (74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20) 18 2 (68–99); specificity, 49% (36– 9); prevalence of malignant le ancy (N=55, 20.8%) 	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplast Benign reference standard (N=61) 31 30 62); PPV, 37% (23–52); sions, 25%
Sensitivity, 90% NPV, 95% (85–9 Ilicular or Hürthle-C N=81, 30.6%) GEC result Suspicious Benign Sensitivity, 90% NPV, 94% (79–9 spicious for Maligna GEC result	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20) 18 2 (68–99); specificity, 49% (36– 9); prevalence of malignant le ancy (N=55, 20.8%) Malignant reference standard (N=34)	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplast Benign reference standard (N=61) 31 30 62); PPV, 37% (23–52); sions, 25% Benign reference standard (N=21)
Sensitivity, 90% NPV, 95% (85–9 Ilicular or Hürthle-C N=81, 30.6%) GEC result Suspicious Benign Sensitivity, 90% NPV, 94% (79–9 spicious for Maligna GEC result Suspicious	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20) 18 2 (68–99); specificity, 49% (36– 9); prevalence of malignant le ancy (N=55, 20.8%) Malignant reference standard (N=34) 32	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplas Benign reference standard (N=61) 31 30 62); PPV, 37% (23–52); sions, 25% Benign reference standard (N=21) 10
 Sensitivity, 90% NPV, 95% (85–9 Ilicular or Hürthle-C N=81, 30.6%) GEC result Suspicious Benign Sensitivity, 90% NPV, 94% (79–9 spicious for Maligna GEC result Suspicious Benign 	(74–98); specificity, 53% (43– 9); prevalence of malignant le ell Neoplasm or Suspicious Malignant reference standard (N=20) 18 2 (68–99); specificity, 49% (36– 9); prevalence of malignant le ancy (N=55, 20.8%) Malignant reference standard (N=34) 32 2	63); PPV, 38% (27–50); sions, 24% for Follicular Neoplass Benign reference standard (N=61) 31 30 62); PPV, 37% (23–52); sions, 25% Benign reference standard (N=21) 10 11

Performance of the Gene-Expression Classifier according to the final histopathological diagnoses for cytologically indeterminate samples

Alexander et al., NEJM 2012

molecular panel vs gene classifier

Neither GEC test sensitivity nor specificity is improved by addition of BRAF mutation testing

Kloos et al., 2013

Mutations in 15-25% of FNA specimens with a very low frequency in atypia/FLUS and Follicular Neoplasm sub-types

In sensitivity analysis, savings were demonstrated if molecular testing cost was less than \$870

Cost of Asuragen miRInform Thyroid panel \$2250

Medicare reimbursement for this test is currently \$650, while the range of reimbursements from private insurers varies up to \$950

cost savings with molecular testing of FNA results in two indeterminate cytological categories: FLUS and FN

Yip et al., JCEM 2012

GEC in patients with indeterminate thyroid nodules overall costs reduction quality of life improvement

Treatment with current standard of care practice

without molecular testing = \$12,172/pt

Treatment with current standard of care practice

with GEC test = \$10,719/pt

(3/4 reduction in the number of unnecessary diagnostic surgeries)

Cytology and BRAF determination why not?

Ohori et al., 2013

Table 2. Distribution of BRAF-Positive Cases Among Indeterminate and Malignant Diagnoses

•

Molecular analysis of FNAB material: clinical implications

	BF Pos	RAF litive	BF Neg	RAF lative			
Characteristic	No.	%	No.	%	P*		
All types of PTC					-		
No. of patients	53		76				
Recurrence/persistence	19	35.8	9	11.8	.002 .01		
Median	31	00	7	79			ti01
Range	0-2	211		• • -			
operative ic	<u>Jer</u>	ntif ext	ico en	itio sive	n di	seas	e 2
operative ic at risk fo	Jen or e	ntif ext	ico en: ve	sive tre	n dis eatre	seas	e ?
operative is at risk for more agg	len or e or e	ext ssiv	ico ens ve		atr	seas	e ?
operative is at risk fo more agg	den or e or e	ntif ext ssiv	ico en: ve		n di di atr	seas	e ?
operative is at risk fo more agg	Jen or e or e	ntif ext ssiv	ico ens ve		n o dis e dis e atm .004 .014	seas	e ?
operative is operative is at risk fo more agg	Jen or e or e	ntif ext ssiv	ico ens ve		n o dis atr .004 .014	seas	e ?
perative is operative is at risk fo more agg	den or e or e or e	ntif ext ssiv	ico en: ve		n o di adi atri .004 .014	seas	e ?
Follow-up, months A period of the second of	len r 6 re: 10 0.2 7.1	114	ico ens ve	110 5106 5106 77 204 29 116	n o dis atro .004 .014	seas	e ?

Preoperative BRAF analysis facilitate prediction of occult VI level metastatic lymph-nodes

TABLE 3. Association of *BRAF* mutation detected on thyroid FNAB with clinicopathological characteristics of 148 PTC patients

Back to cytology alone?

BRAF ^{V600E} mutation is most common in nodules with other cytologic risk factors for malignancy, which already warrant a total thyroidectomy. Therefore, single-mutation screening for BRAF ^{V600E} does not meaningfully improve preoperative risk stratification

Kleiman et al., Cancer 2013

BRAF(V600E) mutation is most common in nodules with other cytologic risk factors for malignancy

Kleiman et al., 2013

.....no meaningful improvement in sensitivity, specificity, NPV, or PPV when BRAF testing is added to conventional cytology

Kleiman et al, 2013

The evolution in thyroid cancer diagnosis

The goals of molecular FNAB

TABLE 2. Current classification of thyroid FNAB by different organizations and the respective goals for molecular FNAB

AACE/AME/ ETA, 2010 (1)	BTA, 2007 (3)	ATA, 2009 (5)	NCI, 2008 (83)	Molecular FNAB goals
Nondiagnostic	Nondiagnostic	Nondiagnostic/ inadequate	Nondiagnostic/unsatisfactory	26% Mutation positive (39). Reduce rate of a second FNAB
Benign	Benign	Nonneoplastic	Benign	Reduce the FN rate in settings with high FN between 6 and 17% (9)
Follicular lesion	Follicular lesion	Indeterminate	Follicular lesion of undetermined significance/ atypia of undetermined significance	Improve the differential diagnosis between benign and malignant. Sensitivity 85.7/97%, specificity 97/ 100% (39, 40). Reduce the rate of diagnostic surgery. Increase the rate of total thyroidectomy as first surgery
Suspicious	Suspicious	Suspicious (for PTC)	Follicular-neoplasm/suspicious for follicular neoplasm Hurthle cell neoplasm. Suspicious for malignancy	Improve the differential diagnosis between benign and malignant. Increase the rate of total thyroidectomy as first surgery (53)
Malignant	Malignant	Malignant	Malignant	Increase the rate of total thyroidectomy as first surgery and define the extension of the surgery

diagnostic algorithms are changing

Information for Clinicians: Commercially Available Molecular Diagnosis Testing in the Evaluation of Thyroid Nodule Fine-Needle Aspiration Specimens

Steven P. Hodak¹ and David S. Rosenthal²

for the American Thyroid Association Clinical Affairs Committee

TSH receptor mRNA reverse transcription–polymerase chain reaction, the Veracyte and Asuragen commercial methods, and the noncommercial use of *BRAF*, *RAS*, *RET/PTC*, and *PAX8/PPAR*? testing have promising roles in the diagnosis and treatment of patients with nodular thyroid disease and thyroid cancer. However, at this time, experience with these molecular methods remains limited, and no test has perfect sensitivity and specificity. Peer-reviewed data evaluating the diagnostic performance of these tests are increasingly available. The American Thyroid Association (ATA) feels that until an expert consensus review of existing data (now underway by the ATA Guidelines Task Force) can be completed, no evidence-based recommendation for or against the use of these methods with appropriate caution, and to remain cognizant of the limitations of the data supporting their use. Patients who are interested in the use of these tests in their own care should discuss them thoroughly with their care providers. Until evidence-based recommendations are available, determining whether or not the limited data available support the use of these methods should be considered on a case-by-case basis.

Thank you for your attention

laura.fugazzola@unimi.it

