

12° Congresso Nazionale AME

Associazione Medici Endocrinologi

6th Joint Meeting with AACE

American Association of Clinical Endocrinologists

Bari, 7-10 novembre 2013

Terapie endocrino-metaboliche e rischio oncologico

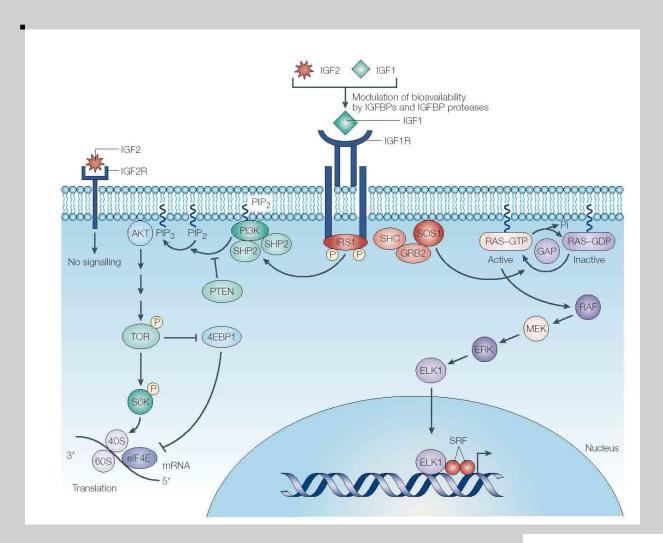
GH

Marco Gallo

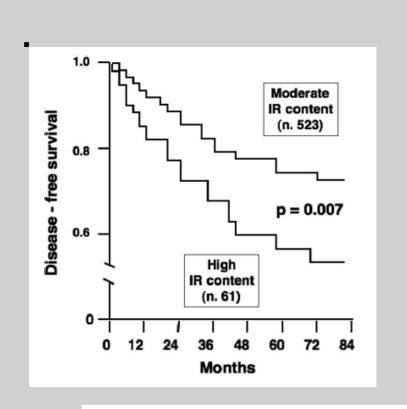
SCDU Endocrinologia Oncologica AO Città della Salute e della Scienza di Torino Molinette - COES

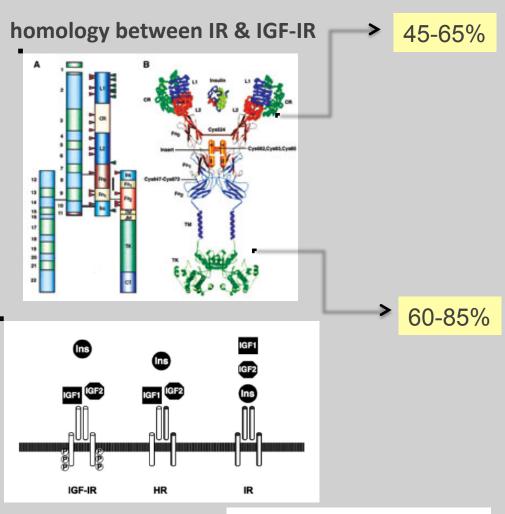
Does growth hormone cause cancer?

- physiology/pathophysiology
- in vitro studies
- animal studies
- epidemiologic studies
- GH excess clinical settings
 - acromegaly
 - unlicensed GH therapy w/o GHD
- GH replacement in GHD


endocrine, autocrine, and paracrine actions

- influencing factors:
 - IGF-1 receptor (type 1) density
 - IGF-1/insulin receptor hybrids



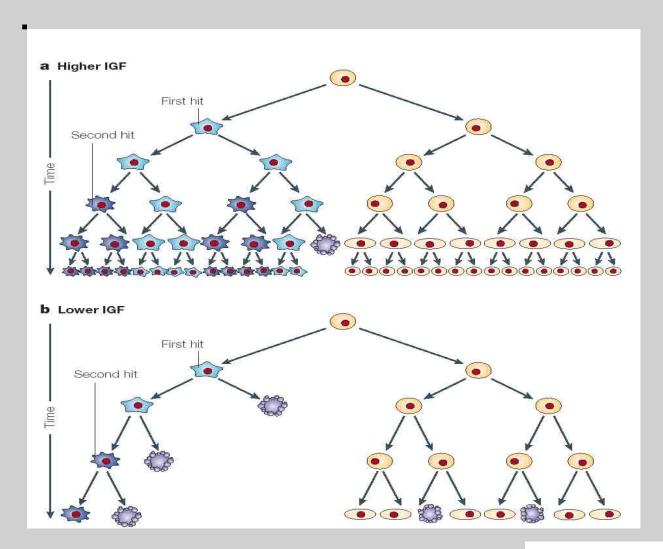


IGF-1 and insulin receptors

endocrine, autocrine, and paracrine actions

- influencing factors:
 - IGF-1 receptor (type 1) density
 - IGF-1/insulin receptor hybrids
 - IGF-binding proteins (IGFBP-3, IGFBP-2)
 - regulation of free IGF-1 amount
 - IGF-1-independent actions
 - polymorphisms (IGF-1 gene/GH synthesis pathway)
 - proteases (e.g. PSA), tissue architecture, etc.

powerful effects of IGF-1 on:


- cellular proliferation
- apoptosis

= increased epithelial turnover

across the general population, serum IGF-I levels vary between individuals, and it is postulated that this may impact upon cancer risk

powerful effects of IGF-1 on:

- cellular proliferation
- apoptosis
- angiogenesis & lymphangiogenesis
- cell motility
- metastases
- development of resistance to chemotherapeutics

GH/IGF-1 axis & tumors animal studies

transfected/silenced mice

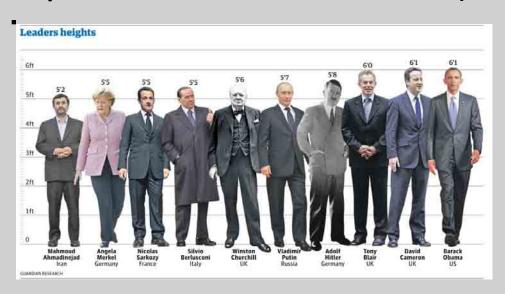
Bates P et al.; Br J Cancer 1995 Yang XF et al., Cancer Res 1996

Ab against IGF-1R

Arteaga CL et al.; J Clin Invest 1989

selective knockout of hepatic IGF-1 gene

Wu Y et al.; Cancer Res 2002 Wu Y et al.; Cancer Res 2003


large IGF-1 level variations vs. physiology

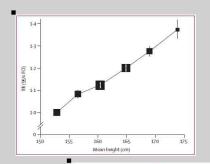
GH/IGF-1 axis & tumors epidemiological studies

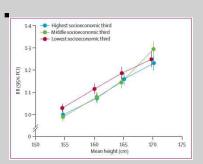
- childhood growth data would predict malignancy in later life
- birth weight/stature
- peak height velocity (& breast cancer)
- final height (& breast, prostate, and CR cancer)
- leg lenght

GH/IGF-1 axis & tumors epidemiological studies

general population

- possible link between GH/IGF-1 levels & the development of a variety of different cancers
- subjects with IGF-1 levels that are in the higher centiles of the normal range would have a significantly increased risk of developing
 - breast, prostate, and colon cancer
 - lung cancer?


Hankinson SE et al.; Lancet 1998 Wolk A et al., J Natl Cancer Inst 1998 Height and cancer incidence in the Million Women Study:
prospective cohort, and meta-analysis of prospective studies
of height and total cancer risk


Lancet Oncol 2011; 12: 785-94

taller people are at increased risk of cancer

- large prospective cohort of ~1.3 M middle-aged women w/o previous cancer (follow-up 9.4 yy)
- ~97,000 incident cancers (17 sites)
- RR for total cancer for every 10 cm increase in height was
 1.16 (95% CI 1·14–1·17; p<0·0001)
- statistically significant increased risk for 10 sites
 - independently of socioeconomic status & geographic area
 - lower in current smokers
- IGF-1 levels in childhood/adulthood?

	Mean year of birth*	Mean height (cm)	Proportion of current smokers	Cancer outcome	Number of cancers		RR (95% CI) per 10 cm increas
Men							
Batty (UK, 2006) ¹	1917	175	42%	Mortality	3101	-	1-10 (1-05-1-16
Davey-Smith (UK, 2000) ²¹	1919	170	57%	Mortality	997	-	1-07 (0-98-1-18
Tulinius (Iceland, 1997) ²²	1924	177	54%†	Incidence	1785		1-10 (1-03-1-20
Giovannucci (USA, 2004) ²³ ‡	1928	176	20%	Incidence	3270	-	1-11 (1-04-1-17
Hebert (USA, 1997) ²⁴ 5	1929	178	10%	Incidence	2566	-	1-10 (1-04-1-17
Albanes (USA, 1988) ¹	1931	174	40%	Incidence	341		1-28 (1-06-1-56
Jousilahti (Finland, 2000) ²⁵	1935	172	47%	Mortality	659		1-04 (0-91-1-18
Batty (Australasia, 2010) ^{26,22}	1936	179	NA	Mortality	1951		1-10 (1-03-1-17
Okasha (UK, 2000) ⁷⁸	1938	175	34%	Mortality	311		0.98 (0.79-1-21
Sung (South Korea, 2009)*	1943	168	53%	Incidence	23725	=	1-10 (1-05-1-12
Batty (Asia, 2010) ^{26,29}	1946	168	:NA	Mortality	3281	-	1-07 (1-00-1-14
All men						•	1-10 (1-08-1-1
Women						" η	
Davey-Smith (UK, 2000) ²¹	1919	158	47%	Mortality	848		1-08 (0-96-1-21
Tulinius (Iceland, 1997) ²²	1925	164	41%**	Incidence	1490		1-10 (1-01-1-22
Albanes (USA, 1988) ¹	1935	161	30%	Incidence	302		1-08 (0-88-1-32
Jousilahti (Finland, 2000) ²⁵	1935	158	14%	Mortality	441		0.96 (0.84-1.1)
Batty (Australasia, 2010) ^{26,77}	1938	161	:NA	Mortality	1131		1-19 (1-08-1-30
Okasha (UK, 2000) ²⁸	1939	163	20%	Mortality	77	4	0-89 (0-57-1-40
Million Women Study (UK, 2011)	1942	161	20%	Incidence	97376	19	1-16 (1-14-1-17
Batty (Asia, 2010) ^{26,27}	1943	156	NA	Mortality	1134		1-14 (1-02-1-24
Sung (South Korea, 2009)*	1943	155	3%	Incidence	9443	*	1-14 (1-10-1-19
All women						4	1:15 (1:14-1:17
Total						\$	1-14 (1-13-1-1

GH/IGF-1 axis & tumors acromegaly

increased risk of:

- colorectal tumors: 2-7.6x
- thyroid tumors
- breast tumors? prostate cancer?

- ✓ genetics?
- ✓ hyperinsulinemia & diabetes role?

Best Practice & Research Clinical Endocrinology & Metabolism Vol. 22, No. 4, pp. 639–657, 2008 doi:10.1016/j.beem.2008.08.011 available online at http://www.sciencedirect.com

Bari, 7-10 novembre 2013

Andrew G. Renehan* PhD, FRCS
Bernadette M. Brennan MD, FRCPCH

Acromegaly, growth hormone and cancer risk

	Country	Case/control		Adenom	a prevalence	Comments on controls	Conclusions—	
			acromegaly	Acromegaly	Controls		prevalence rate	
Klein et al, 1982	USA	17/	49	5 (29)	-	Two literature review papers	Increased	
ltuarte et al. 1984	USA	12/-	56	2 (15)	1-1	Population cancer rates only	Increased	
Brunner et al, 1990	USA	29/	NR	4 (14)	-	Population cancer rates only	Increased	
Ezzat et al. 1991	USA	23	47	8 (35)	-	One study from literature	Increased	
Ortego et al, 1994	Spain	27/-	49	7 (26)	-	Compared with literature	Inclusive	
Ladas et al. 1994	Greece	54/	47	5 (9)	-	Compared with literature	No increase	
Vasen et al. 1994	NH	49	54	11 (22)	-	Compared with literature	Increased	
Delhougne et al, 1995	France	103/138	51	23 (22)	11 (8)	In-house non-acromegalic parients with IBS symptoms	Increased	
Jenkins et al. 1997	UK	127/562	22-80	34 (26)	63 (11)	In-house non-acromegalic symptomatic patients	Increased	
Renehan et al. 2000	UK.	115/models	55	14 (12)	Age-dependent ranges	Controls modelled from 8 autopsy (n = 3559) and 4 screening colonoscopy (n = 810) studies	No increase	
Martino et al, 2004	Italy	75/75	54	3 (10)	1 (10)	Age/sex-matched patients with IBS bowel symptoms	No increase	
Bhansali et al. 2004	India	60/160	65	0	0	Age/sex-matched patients with IBS bowel symptoms	No increase	
Terzola et al, 2005	italy	235/233	49	55 (23)	34 (15)	In-house non-acromegalic symptomatic patients	Increased	
Matano et al, 2005	Japan	19/76		8 (42)	13 (17)	In-house non-acromegalic patients	Increased	
Matjya et al, 2006	Poland	51/-	53	21 (41)		Compared against same sample using autofluorescence colonoscopy	'High prevalence	

acromegaly & CRC

- small patient numbers, unadjusted for major confounding factors (eg, age and gender)
- endoscopists are not blind (operator bias)
- colonoscopy is technically more difficult in acromegalic patients

 more experienced endoscopists may detect more neoplastic lesions.
- hyperplastic &adenomatous polyps described together
- in population-based studies among cohorts of acromegalic patients, invasive CRC rates range from 0.8% to 1.3%.

acromegaly & neoplasms

associations of acromegaly with CR and thyroid cancer in population-based studies

Study	No. of cancers	No. of acromegalics	Risk ratio	Risk ratio (95% CI)	
Colon cancer			1		
Ron et al. 1991	13	1041	1-1	3.10 (1.70, 5.10)	
Orme et al. 1998	12	1364		1.68 (0.87, 2.93)	
Baris et al. 2002	23	1634		2.60 (1.60, 3.80)	
l ² = 11.5%			\Diamond	2.46 (1.79, 3.38)	
Rectal cancer			1		
Ron et al. 1991	1	1041	•	0.40 (0.00, 2.20)	
Orme et al. 1998	4	1364		0.86 (0.23, 2.20)	
Baris et al. 2002	13	1634		2.50 (1.30, 4.20)	
$1^2 = 50.2\%$	ites		>	1.41 (0.54, 3.71)	
Thyroid cancer			2		
Ron et al. 1991	1	1041	- 1-	→ 4.30 (0.20, 21.4)	
Orme et al. 1998	1	1364 —	-+-	→ 2.54 (0.07, 14.2)	
Baris et al. 2002	3	1634	-	3.70 (1.50, 9.10)	_
$1^2 = 0.0\%$				3.64 (1.63, 8.11)	se
				3.70 (1.50, 9.10) 3.64 (1.63, 8.11)	
		5	J. 1 1 1	T C+	
			0.5 1 2 5 RR [log scale]	462	

Bari, 7-10 novembre 2013

GH therapy

GH/IGF-1 axis & tumors GH therapy

1) de-novo cancer in non-cancer patients with GHD

2) tumor recurrence in patients with previously treated cancer and with GHD

3) 2nd neoplasms in survivors of childhood cancer with GHD

1) de-novo cancer in non-cancer patients with GHD

de-novo cancer in non-cancer patients with GHD

Increased fat mass (especially central adiposity)

Decreased lean body mass

Decreased muscle strength

Decreased exercise performance

Decreased cardiac capacity

Decreased bone mineral density and increased risk of fracture

Atherogenic lipid profile

Thin, dry skin

Psychosocial problems and decreased quality of life

Fatigue.

Depression

Anxiety

Impaired sleep

Social isolation

GHRT

long-term

- efficacy
- safety
- cost-effectiveness

continuation of therapy generally recommended even after completion of linear growth

de-novo cancer in non-cancer patients with GHD

increased malignancy risk

- case-reports
- a minority of series
- SAGhE

not increased malignancy risk

- HypoCCS
- KIMS
- NCGS

Wada E et al.; *Jpn J Clin Oncol* 1989 Watanabe S et al: *J Pediatr Endocrinol* 1993

Watanabe S et al; *Lancet* 1998 Swerdlow AJ et al.; *Lancet* 2002

de-novo cancer in no patients with C.

Prospective Safety Surveillance of GH-Deficient dults: Comparison of GH-Treated vs Untreated

Hypopituitary Control and Complication Study (HypoCSS), Lilly™

- IR of events between GH-treated and untreated 2430 GHD adults
- prospective observational study
- 157 US centers (1996-2002)
- mean follow-up 2.3 years
- no significant difference
 - death
 - new cancer
 - intracranial tumor growth/recurrence
 - DM
 - CV events

	GH-Treated (n = 1988)	Untreated (n = 442)
Cancer type, n (%)	TO DE ANADOLINA.	ATT CALC - POSSET
Skin cancer ^b	10 (0.50)	5 (1.13)
Prostate cancer	3 (0.15)	3 (0.68)
Breast cancer	4 (0.20)	1 (0.23)
Lung cancer ^c	4 (0.20)	0
Colorectal cancer	2 (0.10)	1 (0.23)
Acute leukemia	2 (0.10)	0
Carcinoid tumor	0	1 (0.23)
Lymphoma	0	1 (0.23)
Ovarian cancer	1 (0.05)	0
Ewing's sarcoma	1 (0.05)	0
Pancreatic islet cell tumor	1 (0.05)	0
Bladder/urethral cancer	1 (0.05)	0
Fibrosarcoma	1 (0.05)	0
Laryngeal cancer	1 (0.05)	0
Polycythemia vera	1 (0.05)	0
Total cancers, n (%)	32 (1.61)	12 (2.71)

For total cancer events, there was no significant difference between the 2 groups after controlling for baseline differences (P = .57).

de-novo cancer in no on GH repla and Roger Abs? patients with GHL

Pfizer™ [formerly Kabi ™] International Metabonic Database (KIMS)

- multicentre, non-interventional study
- mortality & associated factors within GHRT <u>adults</u>
- **13,983** GHD patients; 528 deaths
- mean follow-up 4.9 years
- mortality: slightly higher vs. general pop.
- no increased SMR for deaths from CVDs or malignancies

de-novo cancer in no Hormone in Chi

National Cooperative Growth Study (NCGS), Genentech™

- multicenter post-marketing surveillance study to monitor safety & efficacy of rhGH
- **54,996** <u>children</u> (1985-2006), 900 investigators
- 20 years of GH therapy
- de-novo malignancies: not significantly increased vs. general population
 - leukemia
 - intra/extracranial

Age (yr)	Years of GH exposure	Expected rate per 100,000 yr of exposure	Observed cases	Expected cases
0-4	11.348	20.4	1	2.32
5-9	44,585	11.4	6	5.08
10-14	85,909	12.9	12	11.08
15-19	36,082	20.0	9	7.22
20-24	540	34.9	1	0.19
Total	178,464	14.5°	29	25.88

of Recombinant Human Growth

de-novo cancer in patients with d

Deficiency or Childhood Short Stature: Preliminary Safety and appropriateness of Gh treatment in and selections Europe (SAGhE)

 population-based study on long-term safety of rhGH in French children

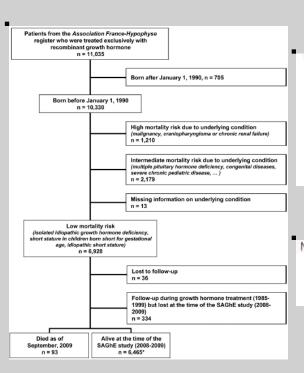
Hormone Treatment for Isolated Growth Hormone

Report of the French SAGhE Study

- 6928 children (1985-1996) with low-risk
- mean follow-up: 17.3 years
- all-cause mortality increased (SMR 1.33) vs. general pop.
 - all-type cancer mortality non increased (CRC, Hodgkin...)
 - bone tumor-related mortality increased (SMR 5.00)
- GH doses >50mcg/kg/day associated with mortality rates

Europe # 20 g /Hagings

de-novo cancer in non-cancer patients with GHD


Bari, 7-10 novembre 2013

Safety and appropriateness of Gh treatment in

Europe (SAGhE)

Long-Term Mortality after Recombinant Growth Hormone Treatment for Isolated Growth Hormone Deficiency or Childhood Short Stature: Preliminary Report of the French SAGhE Study

J Clin Endocrinol Metab, February 2012, 97(2):416–425 Jean-Claude Carel, Emmanuel Ecosse, Fabienne Landier, Djamila Meguellati-Hakkas, Florentia Kaguelidou, Grégoire Rey, and Joël Coste

Duration of follow-up				
Duration of follow-up after the end of treatment (yr)				
≤5 (n = 6402)	31	25.93	1.20	(0.81-1.70)
≤10 (n = 6402)	57	46.32	1.23	(0.93-1.59)
$\leq 15 (n = 6402)$	83	61.38	1.35	(1.08 - 1.68)
Time after the end of treatment (yr)				
≤5 (n = 6402)	31	25.93	1.20	(0.81-1.70)
>5 and ≤10 (n = 6035)	26	20.39	1.28	(0.83 - 1.87)
>10 and ≤15 (n = 5316)	26	15.06	1.73	(1.13-2.53)
			Propert 0.17	

Neoplasms (140-239)	7	6.89	1.02	(0.41-2.09)
Malignant neoplasm of lymphatic and hematopoietic tissue	2	1.36	1.47	(0.17-5.31)
(200-208)				
Malignant neoplasm of bone and articular cartilage (170)	3	0.60	5.00	(1.01-14.61)
All other neoplasms ^b	2	4.93	0.41	(0.05-1.46)

"Overall, our results do not allow the conclusion of the causal role of GHtreatment in the findings but highlight the need for additional studies on long-term morbidity and mortality after GHtreatment in childhood, in particular when high doses have been used"

1) de-novo cancer in non-cancer patients with GHD

inconclusive evidence of a very modest increase in cancer risk

2) tumor recurrence in patients with previously treated cancer & with GHD

tumor recurrence in patients with previously treated cancer & with GHD

Bari, 7-10 novembre 2013

not increased risk

Arslanian SA et al., Am J Dis Children 1985

- Rodens KP et al., Acta Endocrinol 1987
- Clayton PE et al., Lancet 1987
- Ogilvy-Stuart AL et al., BMJ 1992
- Swerdlow AJ et al., J Clin Endocrinol Metab 2002

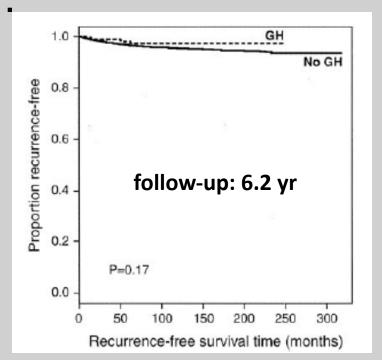
Study	N	Patient-years on growth hormone treatment	Principal malignancy type(s)	Risk estimate
Ogilvy-Stuart et al [105]	53	and a	brain tumors	RR 0.8
Sklar et al [98]	172	-	brain tumors	RR 0.8
Swerdlow et al [104]	180	-	brain tumors	RR 0.6
Blethen et al [96]	19,000	47,000	leukemia	no increased risk
Maneatis et al [97]	33,161	113,000	leukemia	SMR 0.7
			nonleukemic neoplasms	SMR 0.4
Wyatt [95]	~33,000	135,431	nonleukemic neoplasms	SIR 0-1.6

NCGS

not increased risk of leukemia/brain tumors recurrences

CCSS

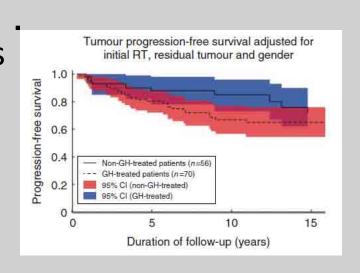
- 13,539 survivors of pediatric tumors
- 361 GH treated pts; follow-up: 6.2 years
- RR of disease recurrence: not increased (0.83; 95% CI 0.37-1.86; P = 0.65)
- RR of mortality: not increased (1.21; 95% CI 0.75-1.94; P = 0.43)


tumor recurrence in patients with previously treated cancer & with GHD

Childhood Cancer Survivor Study (CCSS)

retrospective cohort of 5-yr survivors of childhood cancer diagnosed <21 yr, between 1970 and 1986, and treated in USA/Canada

- currently, overall 5- yr survival rate for childhood cancer: >70%
- most prevalent late effects of cancer therapy: endocrine disorders (40%)
- GHD: up to 30-40%



tumor recurrence in patients with previously treated cancer & with GHD

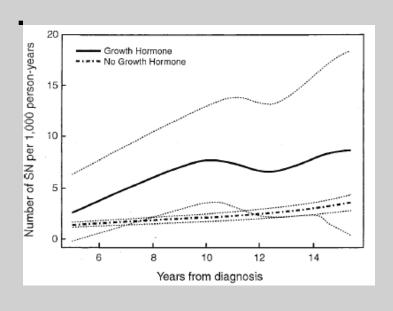
Craniopharyngioma

- case-control study
 - GHD caused by craniopharyngioma
 - rhGH > 3 years vs. no therapy
- 56 patients
- mean duration of GHRT: 13.6 years

long-term GHRT did not affect the PFS

2) tumor recurrence in patients with previously treated cancer & with GHD

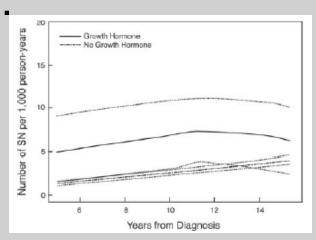
the general evidence suggests no increased risk



Childhood Cancer Survivor Study (CCSS)

- 13,539 survivors of pediatric tumors
- 361 GH treated pts; follow-up: 6.2 years
- RR of 2nd neoplasms 3.21 (95% CI 1.88-5.46; P < 0.0001)
- excess of solid tumors in GH-treated survivors of acute leukemia

Diagnosis	RR (95% CI)	P	
Acute leukemia	4.98 (1.95-12.74)	< 0.001	
CNS tumors	2.34 (0.96-5.70)	0.06	
CNS tumors (meningiomas excluded)	1.46 (0.31-6.79)	0.69	
Rhabdomyosarcoma	1.82 (0.41-8.01)	0.43	



Childhood Cancer Survivor Study (CCSS)

- 14,108 survivors of pediatric tumors
- 361 GH treated pts; follow-up: 8.8 years
- RR of 2nd neoplasms **2.15** (95% CI 1.3-3.5; *P* < 0.002)
- excess of solid tumors in GH-treated survivors of acute leukemia
- meningiomas: the most common 2nd tumor
- the elevation of risk due to GH use diminish increasing follow-up

- NCGS: increased risk with rhGH in pts with a prior history of malignancy, exp. leukemia and previously irradiated pts
- GH could induce mitogenic activity in cells already predisposed to neoplastic change and hence increase the theoretical risk of developing 2nd neoplasms
- The increased risk of developing 2nd neoplasms in GHtreated childhood cancer survivors is now listed in U.S. labeling for all rhGH products

Genetics and Neuroendocrinology of Short Stature International Study (GeNeSIS) + Hypopituitary Control and Complication Study (HypoCSS), Lilly™

- retrospective analysis of 2 prospective cohort studies
 - childhood cancer survivors (GeNeSIS)
 - GHD adults (HypoCSS)
- incidence of 2nd tumors: consistent with increased risk
- estimated cumulative incidence of 2nd tumors after 5 yr of follow-up:
 - 6.2% GeNeSIS
 - 4.8% HypoCSS
- most common: meningiomas (nearly all, after CT/RT exposure)

retrospective study of 50 CCSs who developed GHD due to cancer therapies from a specialized outpatient clinic

Transition Unit for Childhood Cancer Survivors – Città della Salute e della Scienza Hospital of Turin

- cumulative incidence of 2nd neoplasms between pts treated with rhGH during childhood and pts who did not: no difference
- follow-up: <u>20 years</u>
- high incidence of 2nd neoplasms: 28%!
- most common 2nd neoplasms: menigioma, basal cell ca.
- elapsed time to the 2nd neoplasm: shorter in GHD-treated pts (17.0 vs. 24.7 yrs)

•all 2nd neoplasms in pts treated with RT!

GH and IGF-1 have a promoting rather than initiating effect on carcinogenesis \rightarrow GH could accelerate the growth of 2nd neoplasms

Key messages:

- GHRT worthy to CCSs during childhood, to obtain normal height w/o increased risk of cancer
- however, 2nd neoplasms seem to arise earlier: close follow-up!
- in adult survivors, the indication for GHRT are less obvious

some evidence of a modest increased risk associated with GH usage

Bari, 7-10 novembre 2013

Terapie endocrino-metaboliche e

rischio oncologico

Marco Gallo

SCDU Endocrinologia Oncologica AO Città della Salute e della Scienza di Torino Molinette - COES

