

Miocardiopatia Diabetica

Dott. Maurizio Nizzoli

U.O. Endocrinologia e Malattie Metaboliche U.O. Medicina Interna Ospedale G.B. Morgagni – Forlì ASL Romagna maurizio.nizzoli@auslromagna.it

Dott. Massimo lacoviello

U.O. Cardiologia UniversitariaD.A.I. CardiotoracicoAOU Policlinico Consorziale di Barimassimo.iacoviello@policlinico.ba.it

Conflitti di interesse

M. Nizzoli

Ai sensi dell'art. 3.3 sul conflitto di interessi, pag 17 del Regolamento Applicativo Stato-Regioni del 5/11/2009, dichiaro che negli ultimi 2 anni NON ho avuto rapporti diretti di finanziamento con soggetti portatori di interessi commerciali in campo sanitario

Conflitti di interesse

M. Iacoviello

Ai sensi dell'art. 3.3 sul conflitto di interessi, pag 17 del Regolamento Applicativo Stato-Regioni del 5/11/2009, dichiaro che negli ultimi 2 anni ho avuto rapporti diretti di finanziamento con i seguenti soggetti portatori di interessi commerciali in campo sanitario:

Speaker Honorarium: Alere SpA

CASO CLINICO: MARA 67 anni

Roma, 8-11 novembre 2018

- Diabete mellito di tipo 2 dall'età di 60 anni
- Familiarità per diabete e cardiopatia ischemica (padre IMA a 57 anni)
- Regolarmente seguita dal servizio di diabetologia da circa 3 anni
- Terapia in corso:
 - Metformina 1000 mg x 2 al dì
 - •Gliclazide RM 30 mg 1 cp al dì
 - Simvastatina 20 mg 1 cp al dì
 - Cardioaspirina 1 cp al dì
 - •Ramipril 2.5 mg 1 cp al dì

MARA 67 anni: dati

- BMI 29.5 Kg/mq
- PA 130/85 mmHg, polso ritmico 84 min.
- HbA1c 8.2 % (66 mmol/mol)
- Creatinina 1.13
- Filtrato 68 ml/min
- Col LDL 103
- Microalbuminuria 26 mg/g creat

MARA 67 anni: Dati

- Polsi periferici presenti
- Obiettività cardiopolmonare negativa
- ABI nella norma
- Iporiflessia arti inferiori
- Biotesiometria e test monofilamento compatibili con polineuropatia sensitiva
- Piede neuropatico
- Retinopatia non proliferante di grado lieve
- Ecolor doppler carotideo di due anni prima: negativo

MARA 67 anni

- Riferisce dispnea da sforzo: ha sempre fatto le 3 rampe di scala di casa senza problemi, nonostante la vita sedentaria
- Ultimamente deve fermarsi dopo le prime due
- Di recente dopo un episodio simil-influenzale, ha presentato un lieve edema agli arti inferiori serale, che il mattino seguente era scomparso

Che significato dareste a questa dispnea?

Roma, 8-11 novembre 2018

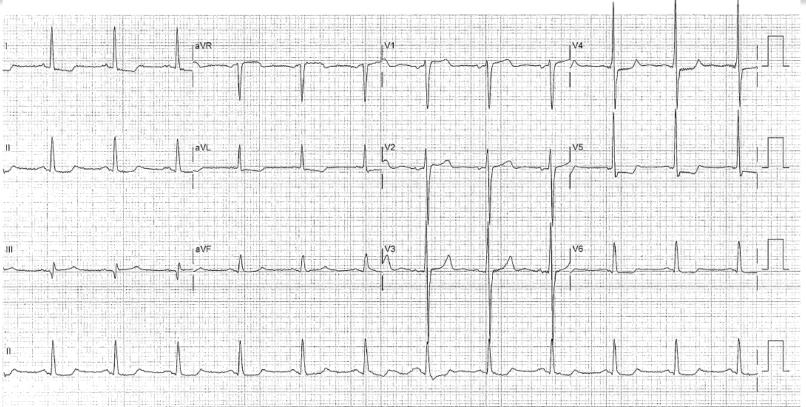
ITALIAN CHAPTER

- 1. Dispnea come equivalente coronarico (cardiopatia ischemica silente)
- 2. Dispnea di origine polmonare
- 3. Dispnea di altra natura

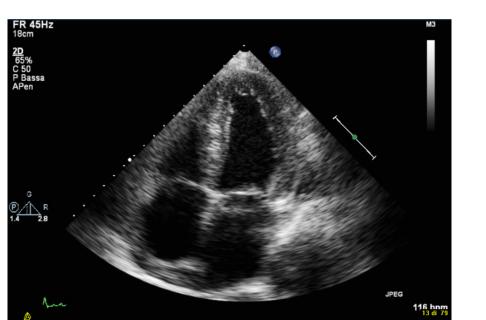
Che esami fareste?

- 1. ECG + Rx Torace
- 2. ECG + Ecocardiografia
- 3. ECG + Test da sforzo
- 4. ECG + RX torace + PFR
- 5. ECG + NT-proBNP

ESAMI



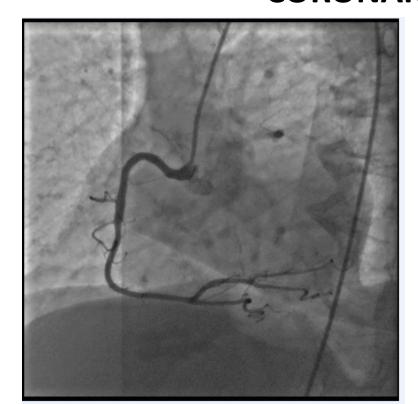
- Rx torace: negativo
- PFR: FEV1 92%
- ECG: r.s., IVS, alterazioni della RV a tipo sovraccarico - ischemia

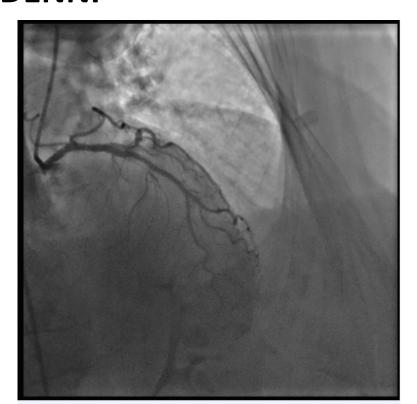

r.s., IVS, alterazioni della RV a tipo sovraccarico - ischemia



ECOCARDIOGRAMMA

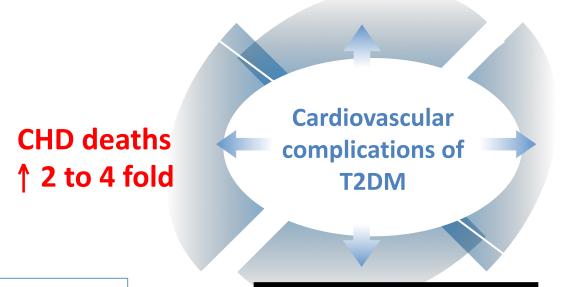
Ventricolo sinistro di dimensioni ai limiti superiori, ipertrofia parietale, funzione sistolica lievemente depressa, FE 47 %, disfunzione diastolica di II grado





CORONAGRAFIA

CORONARIE INDENNI



Cardiovascular disease and diabetes

~ 65% of deaths are due to CVD

Stroke

↑ 2 to 4 fold

Indipendentemente da ipertensione arteriosa e coronaropatia

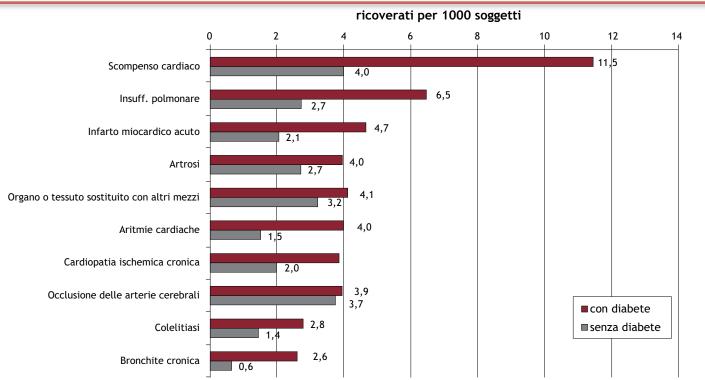
Heart failure
2 M to 5 F fold

Prognostic Impact of Diabetes on Long-term Survival Outcomes in Patients With Heart Failure:

Diabetes Care 2017;40:1597–1605 | https://doi.org/10.2337/dc17-0697

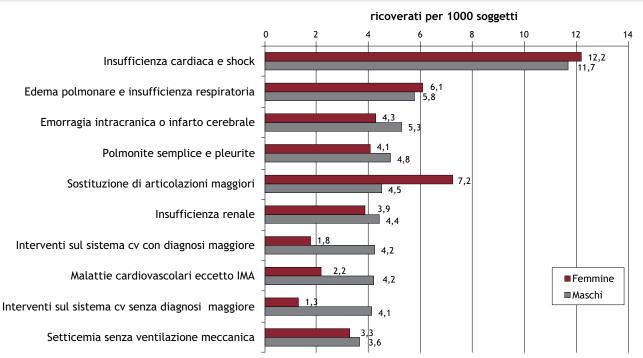
A Meta-analysis

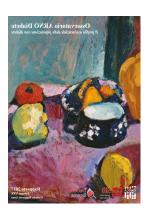
- 31 registri e 12 trials
- 381725 pz (26.1% diabetici: 99720 pz)
- Età media: 68,9 anni, 56 % M
- Follow up medio: 3 anni
- 199832 per Acuto HF (23.8% diabetici: 47495 pz)
- 181893 per Cronico HF (28.7% diabetici: 52225 pz)


END POINT	HR
Mortalità per tutte le cause	1.28 (CI 1.21 – 1.35)
Morte cardiovascolare	1.34 (CI 1.20 – 1.49)
Ospedalizzazione	1.35 (CI 1.20 – 1.50)
Morte per tutte le cause + ospedalizzazione	1.41 (CI 1.29 – 1.53)


- Il rischio di mortalità e ospedalizzazione era maggiore per pz. diabetici con scompenso cronico rispetto a quelli con scompenso acuto (maggiore morbilità)
- Nessuna differenza tra LVEF ≤ 35% vs > 35% di partenza

Osservatorio ARNO Diabete 2017




Prime 10 diagnosi principali in corso di ricovero ordinario in soggetti con e senza diabete

Osservatorio ARNO DIABETE 2017

10 DRG più frequenti nei diabetici ricoverati in regime ordinario in funzione del sesso

Trial DIABETICI	Prevalence of HF at baseline	Trial CARDIOPATICI	Prevalence of T2DM	AMI
Glucose-lowering trials UKPDS 33 ¹¹ I ADVANCE ^{12,13} ACCORD ¹⁴ VADT ¹⁵ DPP4 inhibitor trials SAVOR-TIMI 53 ^{16,17} TECOS ¹⁸ EXAMINE ¹⁹ SGLT2 inhibitor trials EMPA-REG OUTCOME ²⁰ CANVAS ²¹ GLP-1 receptor agonist LEADER ²² ELIXA ²³ EXSCEL ²⁴	NR (severe concurrent illness excluded) NR 4.3% NR 13% 18% 28% 10 — 30 % 10% 14–15% trials 14% 22% 16%	Trials of HFrEF PARADIGM-HF ³¹ SHIFT ³² EchoCRT ³³ HF-ACTION ³⁴ SENIORS ³⁵ SOLVD ³⁶ MERIT-HF ³⁷ CHARM-Added ³⁸ DIG-REF ³⁹ Trials of HFpEF I-Preserve ⁴⁰ PEP-CHF ⁴¹ DIG-PEF ⁴² CHARM-Preserved ⁴³ TOPCAT ⁴⁴ Trials of acute HF EVEREST ⁴⁵ TRUE-AHF ⁴⁶ ASCEND-HF ⁴⁷	35% 30% 41% 32% Trials: 30% 15% 25%	(6) zati: 40 – 45%
Prevalenza del Study England ²⁵ Rotterdam ²⁶	diabete di tipo 2 in pazio Year of publication 2001 2001	RELAX-AHF-2 ⁴⁸	47%	di popolazione Prevalence of T2DM without HF 3% 10%

>65

33-84

Mean 69

Mean 77

30%

12%

25%

20%

13%

3%

NA

NA

1997

2005

2005

2006

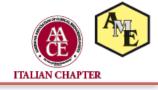
DIABETICI

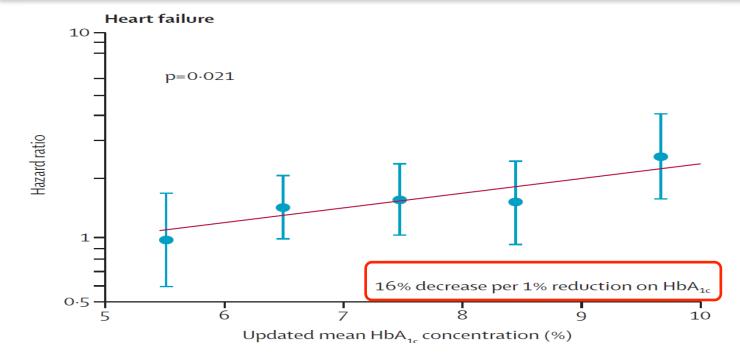
Italy²⁷

Reykjavik⁹

Copenhagen²⁸

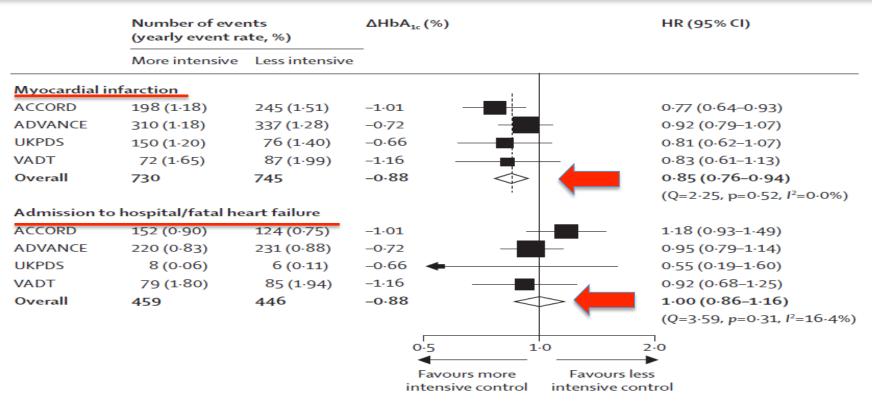
USA, Olmsted County²⁹




Trials randomizzati in pazienti con diabete di tipo 2 nei quali lo scompenso cardiaco è riportato come outcome

OUTCOME	UKPDS	ADVANCE	ACCORD	VADT	RENAAL	IDNT	ALTITUDE
Morte CV	-	5 %	2 %	4 %	11 %	8 %	5 %
IMA	15 %	6 %	5 %	8 %	8 %	7 %	3 %
Stroke	5 %	4 %	5 %	4 %	6 %	4 %	3 %
HF	3 %	4 %	3 %	9 %	13 %	13 %	5 %

Rapporto tra controllo glicemico ed HF Osservazione epidemiologica



Stratton (**UKPDS** 35) *BMJ* 2000; **321:** 405–12

Rapporto tra controllo glicemico ed HF nei Trial d'intervento

Diabetologia 2009; **52:** 2288–98.

European Journal of Heart Failure (2018) **20**, 853-872 doi:10.1002/eihf.1170

HFA POSITION STATEMENT

Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology

Petar M. Seferović^{1*}, Mark C. Petrie², Gerasimos S. Filippatos³, Stefan D. Anker⁴, Giuseppe Rosano⁵, Johann Bauersachs⁶, Walter J. Paulus⁷, Michel Komajda⁸, Francesco Cosentino⁹, Rudolf A. de Boer¹⁰, Dimitrios Farmakis², Wolfram Doehner¹¹, Ekaterini Lambrinou¹², Yuri Lopatin¹³, Massimo F. Piepoli¹⁴, Michael J. Theodorakis¹⁵, Henrik Wiggers¹⁶, John Lekakis², Alexandre Mebazaa¹⁷, Mamas A. Mamas¹⁸, Carsten Tschöpe¹⁹, Arno W. Hoes²⁰, Jelena P. Seferović²¹, Jennifer Logue²², Theresa McDonagh²³, Jillian P. Riley²⁴, Ivan Milinković¹, Marija Polovina¹, Dirk J. van Veldhuisen²⁵, Mitja Lainscak²⁶, Aldo P. Maggioni²⁷, Frank Ruschitzka²⁸, and John J.V. McMurray²⁹

PROGETTO "RIPARTO"

Raccomandazioni Intersocietarie per il Paziente DiAbetico con MultimoRbidiTà CardiOvascolari

DOCUMENTO SU PAZIENTE DIABETICO E SCOMPENSO CARDIACO

Marzo 2018

Scompenso cardiaco

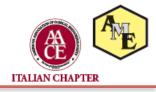
Cause di scompenso nel diabete mellito

Cardiopatia ischemica (CAD)
Cardiopatia ipertensiva
Cardiomiopatia Diabetica

Danno cardiaco che insorge nel paziente con diabete mellito indipendentemente da una coronaropatia, ipertensione arteriosa e patologia valvolare e che evolve verso lo scompenso cardiaco

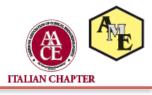
Cardiomiopatia diabetica: concetto non nuovo

1954 Lunbaek K. "Diabetic angiopathy: a specific disease". Lancet 1954; 263:377-379: osservava che la disfunzione miocardica fosse una complicanza correlata al diabete e presente in 2/3 dei pazienti anziani diabetici; avanzò l'ipotesi che potesse esservi una cardiomiopatia correlata al diabete *Diabetes mellitus-related cardiomyopathy*


1972 Rubler S. and Coll. "a new type of cardiomiopathy associated with diabetic glomerosclerosis". Am J Cardiol 1972; 30:595 - 602: descrisse 4 casi di pazienti diabetici complicati con nefropatia e deceduti per scompenso cardiaco, nei quali le coronarie erano indenni da malattia aterosclerotica, non vi era valvulopatia, anamnesi negativa per abuso alcolico; avanzò l'ipotesi di una miocardiopatia microangiopatica *Cardiomiopathy dysfunction*

1977 Regan TJ and All. "Evidence for cardiomyopathy in familial diabetes mellitus". J Clin Invest. 1977; 60: 884-99

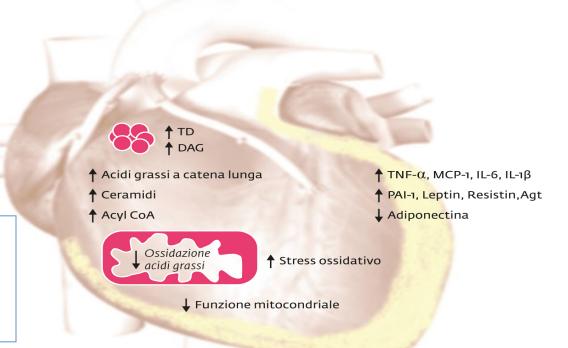
2012 L. Ernade, G. Deremeaux: *Diabetic cardiomyopathy: myth or reality*


MECCANISMI NOTI CHE PROMUOVONO IL DANNO MIOCARDICO

- Glicazione
- Disfunzione endoteliale
- Alterazione del sistema nervoso autonomo
- Attivazione del sistema renina-angiotensina
- Stress ossidativo
- Disfunzione mitocondriale
- Infiammazione e cascata infiammatoria
- Insulino-resistenza
- Glucotossicità
- Lipotossicità

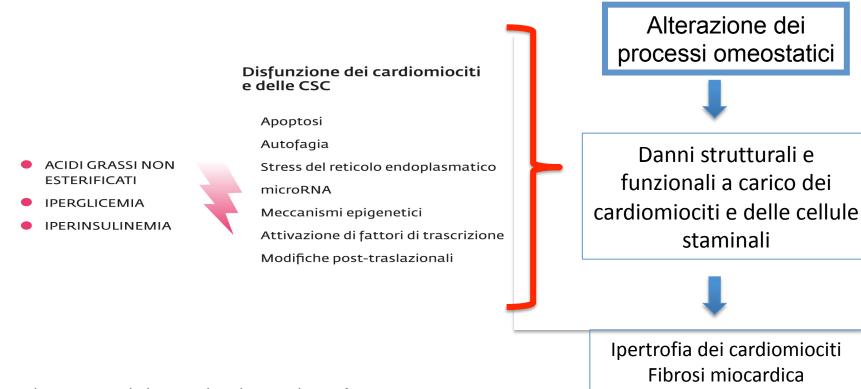
CARDIOMIOPATIA DIABETICA

DUE ATTORI PRINCIPALI:

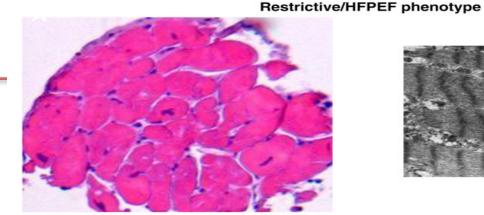

GRASSO: epicardico, extrapericardico, intramiocardico

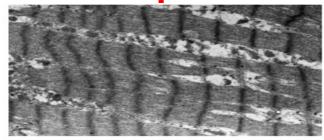
MUSCOLO CARDIACO

LIPOTOSSICITA'

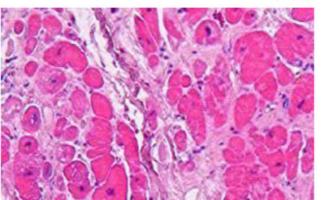


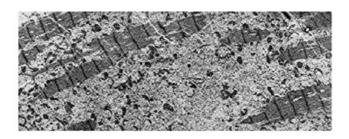
In condizioni di normalità 60 – 90% di ATP proviene da FFA e 10 – 40% dal glucosio





La cardiomiopatia diabetica. Il Diabete Vol. 27 n° 2 giugno 2015





Dilated/HFREF phenotype

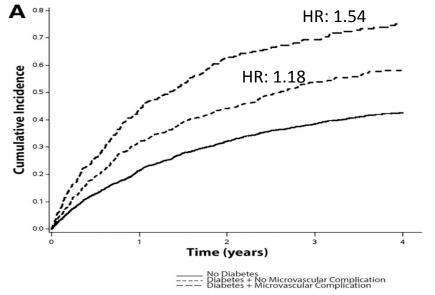
HFrEF

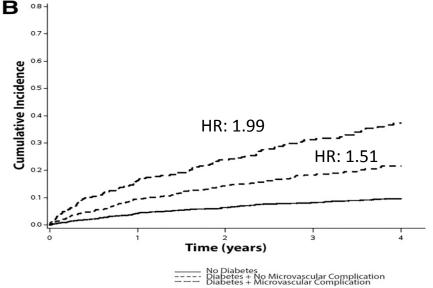
Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes

European Heart Journal (2015) **36**, 1718–1727 doi:10.1093/eurheartj/ehv134

Quando dobbiamo pensare a una cardiomiopatia diabetica ?

Quale è il paziente diabetico che può rappresentare il fenotipo più a rischio di cardiomiopatia diabetica ?


The Prognostic Significance of Diabetes and Microvascular Complications in Patients With Heart Failure With Preserved Ejection Fraction

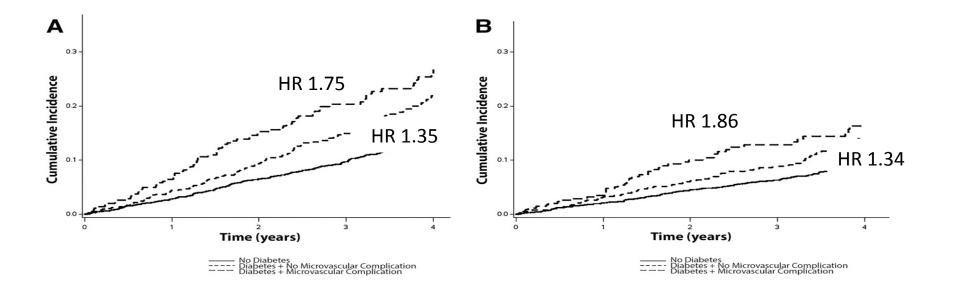

Diabetes Care 2018;41:150–155 | https://doi.org/10.2337/dc17-0755

Trial TOPCAT

3.385 pz di cui 32% diabetici e di questi il 32%

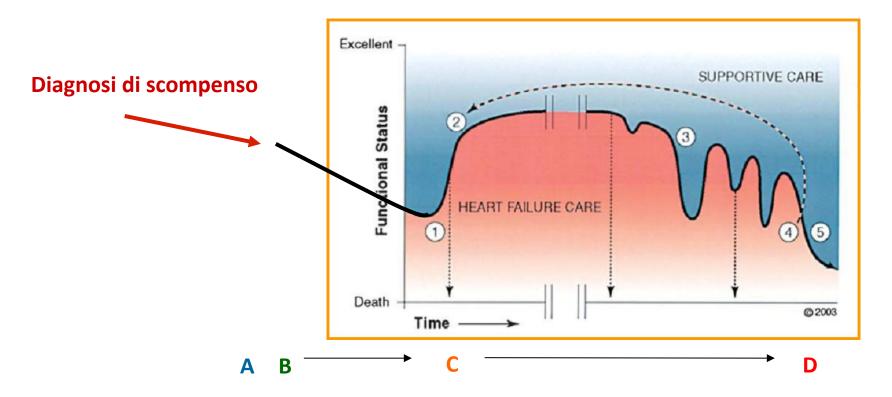
aveva almeno una complicanza microangiopatica

Ospedalizzazione per tutte le cause


Ospedalizzazione per scompenso cardiaco

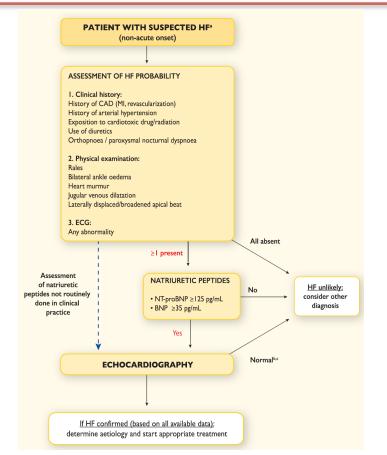
The Prognostic Significance of Diabetes and Microvascular Complications in Patients With Heart Failure With Preserved Ejection Fraction

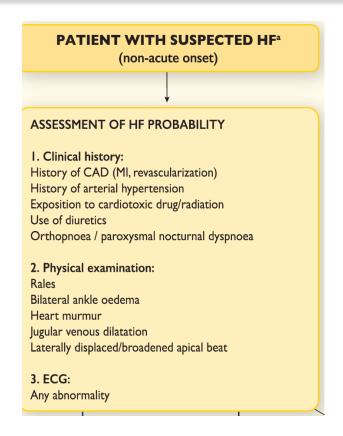
Diabetes Care 2018;41:150-155 | https://doi.org/10.2337/dc17-0755


Morte per tutte le cause

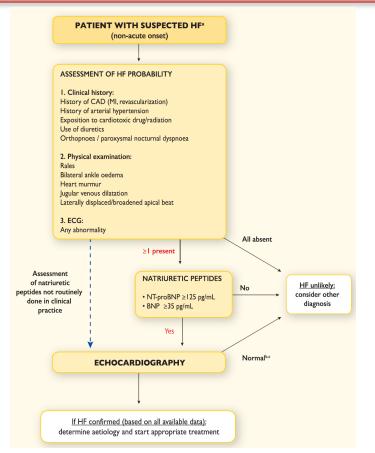
Morte cardiovascolare

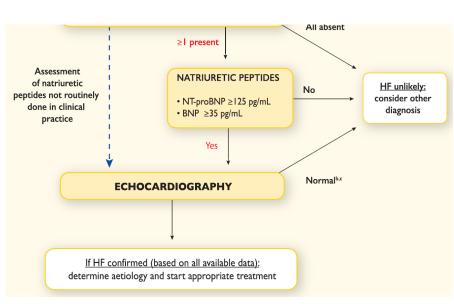
Miocardiopatia diabetica e scompenso cardiaco: Storia naturale



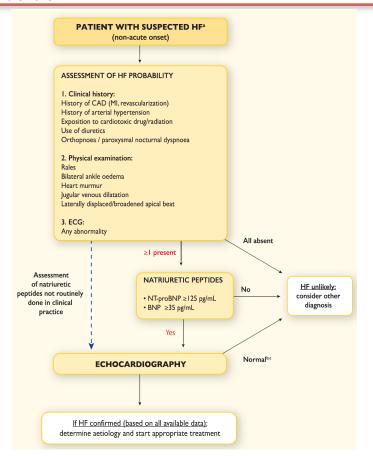


Miocardiopatia diabetica e scompenso cardiaco: aspetti diagnostici

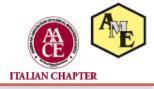


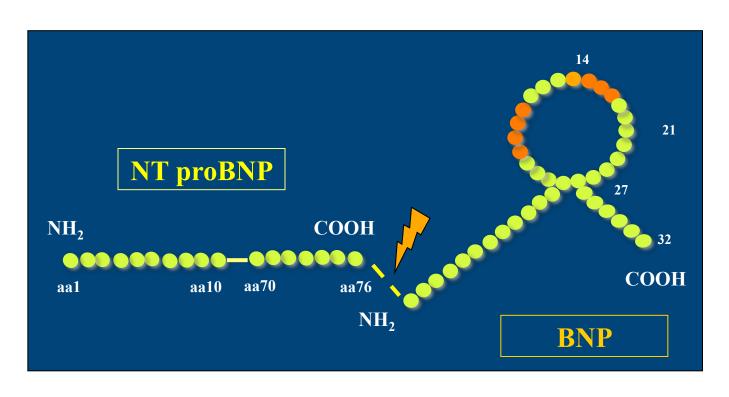


Miocardiopatia diabetica e scompenso cardiaco: aspetti diagnostici

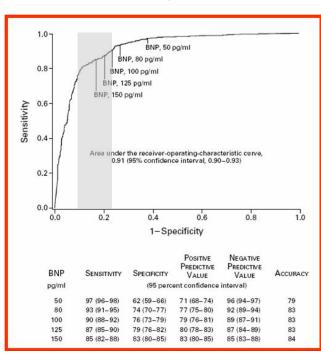


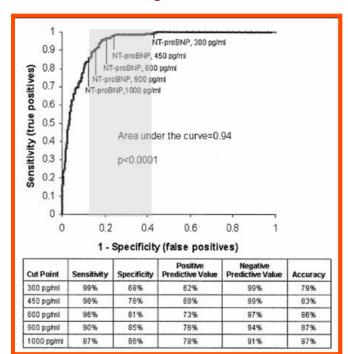
Miocardiopatia diabetica e scompenso cardiaco: aspetti diagnostici




NATRIURETIC PEPTIDES

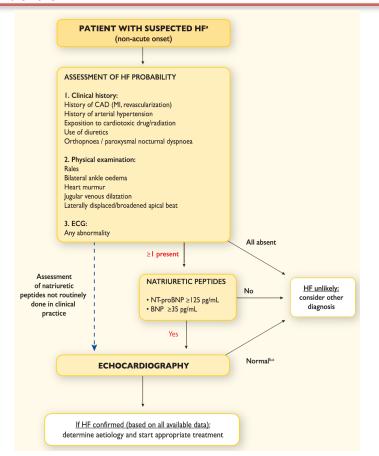
- NT-proBNP ≥ I25 pg/mL
- BNP ≥35 pg/mL

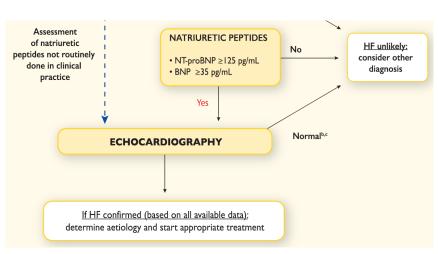

Peptide natriuretico cerebrale (BNP)



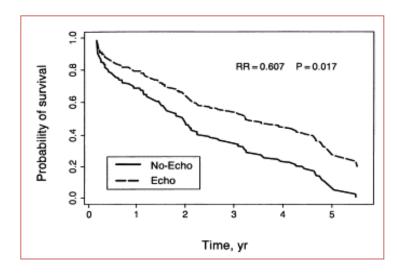
BNP

NTproBNP


Modif da McCullough PA, Rev Cardiovasc Med. 2003.



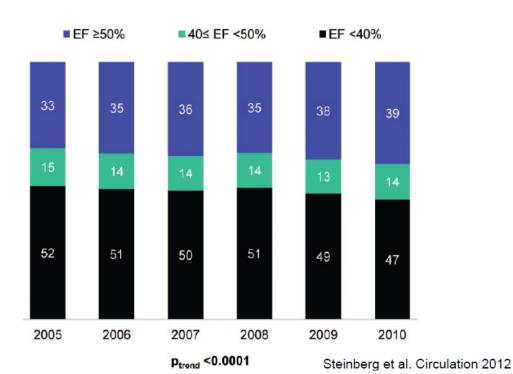
Characteristic	BNP	NT-proBNP
Components	BNP molecule	NT fragment (1–76)
Molecular Weight	4 kilodaltons	8.5 kilodaltons
Genesis	Cleavage from proBNP	Cleavage from proBNP
Half-life	20 minutes	120 minutes
Clearance Mechanism	Neutral endopeptidase Clearance receptors	Renal clearance
Increases with Normal Aging	+	++++
Correlation GFR	-0.20	-0.60
Negative correlation BMI	+++	++
Approved cutoff(s) for CHF Diagnosis	100 pg/mL	Age < 75: 125 pg/mL Age > 75: 450 pg/mL



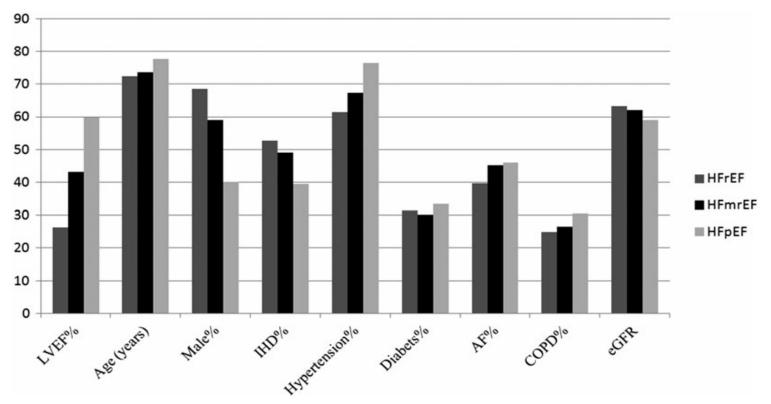
Ruolo dell'ecocardiogramma

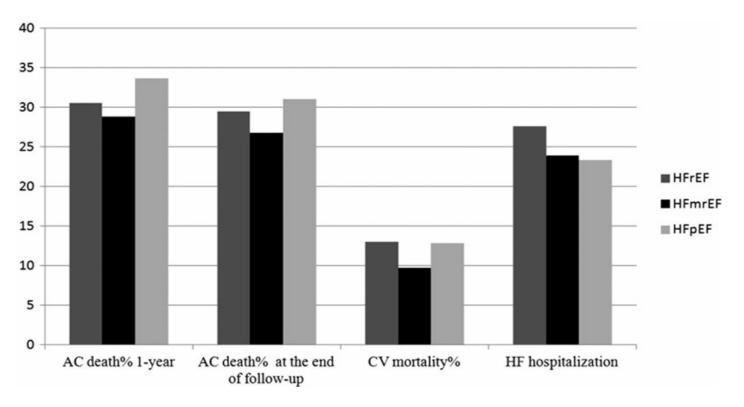
Senni M. et al. J Am Coll Cardiol. 1999;33:164-70.

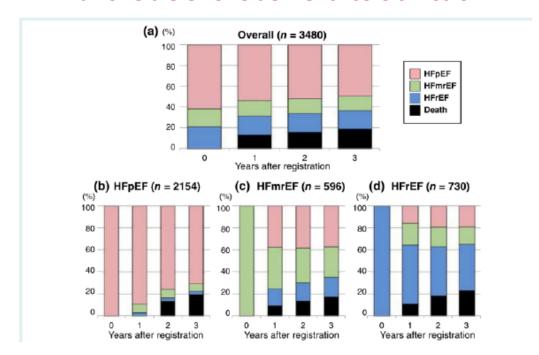
- Dimensioni ventricolo sinistro
- Funzione sisto-diastolica
- Massa ventricolo sinistro
- Dimensioni atriali
- Dimensione e funzione del ventricolo destro
- Funzione valvolare
- Patologia pericardica
- Pressione polmonare
- Trombi
- Vitalità
- Difetti settali

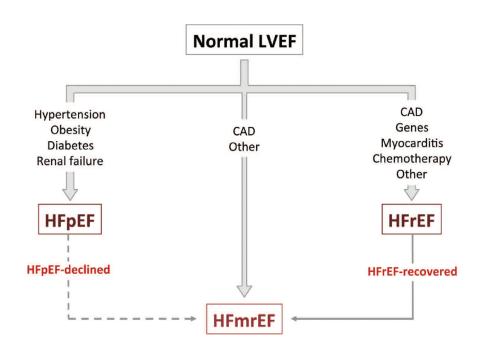


Type of	HF	HFrEF	HFmrEF	PFpEF
	1	Symptoms ± Signs	Symptoms ± Signs	Symptoms ± Signs
	2	LVEF <40%	LVEF 40-49%	LVEF ≥50%
CRITERIA		1. Elevated levels of natriuretic peptides.		Elevated levels of natriuretic peptides.
CRI	3		2. At least one additional criterion: a. relevant structural heart disease (LVF and/or LAE); b. diastolic dysfunction (for details see Section 4.3.2.).	At least one additional criterion: a. relevant structural heart disease (LVF and/or LAE); b. diastolic dysfunction (for details see Section 4.3.2.).

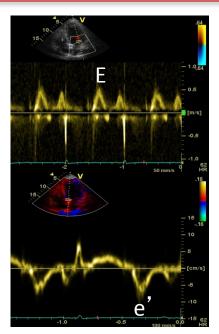


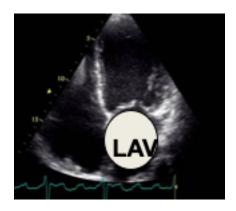


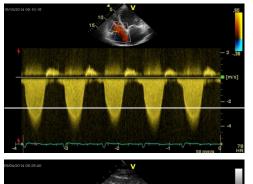




Frazione d'eiezione del ventricolo sinistro




Type of	HF	HFrEF	HFmrEF	PFpEF
	1	Symptoms ± Signs	Symptoms ± Signs	Symptoms ± Signs
	2	LVEF <40%	LVEF 40-49%	LVEF ≥50%
CRITERIA	3	_	1. Elevated levels of natriuretic peptides. 2. At least one additional criterion: a. relevant structural heart disease (LVF and/or LAE); b. diastolic dysfunction (for details see Section 4.3.2.).	1. Elevated levels of natriuretic peptides. 2. At least one additional criterion: a. relevant structural heart disease (LVF and/or LAE); b. diastolic dysfunction (for details see Section 4.3.2.).



Studio funzione diastolica

Rapporto E/e'

- Volume atriale sinistro
- Massa ventricolare sinistra

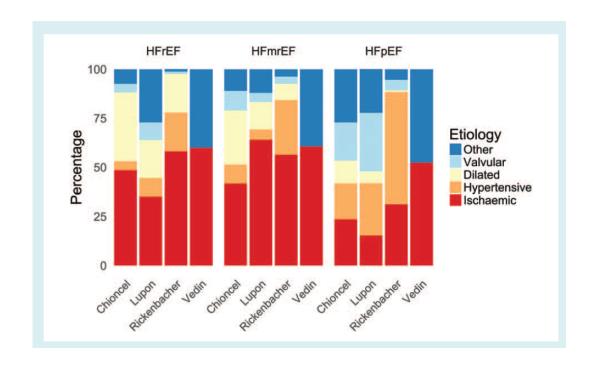
Pressioni polmonari

- Key structural alterations are
 - A left atrial volume index (LAVI) >34 mL/m2
 - a left ventricular mass index (LVMI) ≥115 g/m2 for males and ≥95 g/m2 for females.
- Key functional alterations are
 - an E/e′ ≥13
 - mean e' septal and lateral wall <9 cm/s.
- Other (indirect) echocardiographically derived measurements are longitudinal strain or tricuspid regurgitation velocity (TRV).

Indicazioni alla coronarografia

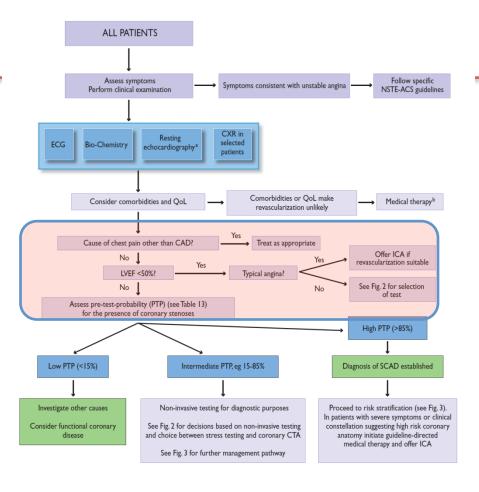
European Heart Journal (2013) **34**, 2949–3003 doi:10.1093/eurheartj/eht296

ESC GUIDELINES


2013 ESC guidelines on the management of stable coronary artery disease

The Task Force on the management of stable coronary artery disease of the European Society of Cardiology

Recommendations	Class ^a	Level ^b
Invasive coronary angiography is recommended in patients with HF and angina pectoris recalcitrant to pharmacological therapy or symptomatic ventricular arrhythmias or aborted cardiac arrest (who are considered suitable for potential coronary revascularization) in order to establish the diagnosis of CAD and its severity.	1	С
Invasive coronary angiography should be considered in patients with HF and intermediate to high pre-test probability of CAD and the presence of ischaemia in non-invasive stress tests (who are considered suitable for potential coronary revascularization) in order to establish the diagnosis of CAD and its severity.	lla	С



Nauta et al. Eur J Heart Fail. doi:10.1002/ejhf.1058

Indicazioni alla coronarografia

Typical angina	Mosts all three of the following characteristics:
Typical angina (definite)	Meets all three of the following characteristics: • substernal chest discomfort of characteristic quality and duration; • provoked by exertion or emotional stress; • relieved by rest and/or nitrates within minutes
Atypical angina (probable)	Meets two of these characteristics.
Non-anginal	Lacks or meets only one or none of the
chest pain	characteristics.

	Typical an	Typical angina Atypical a		angina Non-anginal pa		inal pain
Age	Men	Women	Men	Women	Men	Women
30-39	59	28	29	10	18	5
40-49	69	37	38	14	25	8
50-59	77	47	49	20	34	12
60-69	84	58	59	28	44	17
70–79	89	68	69	37	54	24
>80	93	76	78	47	65	32

Shortness of breath may be the sole symptom of SCAD and it may be difficult to differentiate this from shortness of breath caused by bronchopulmonary disease.

TERAPIA

Dell'Endocrinologo

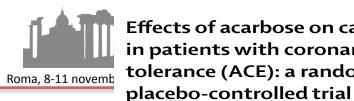
- Insulina Glargine 10 U serale (secondo schema treat to target)
- Metformina 1000 mg a colazione + 1000 mg a cena

Del Cardiologo

- Ramipril 5 mg, ½ cp x 2 al dì
- Lasix 1 cp al dì
- Bisoprololo 1.25 mg, 1 cp x 2 al dì
- Cardioaspirin 100 mg, 1 cp al dì
- Atorvastatina 20 mg, 1 cp al dì

Siete d'accordo con la terapia del cardiologo ? Siete d'accordo con la terapia dell'endocrinologo ?

Comparative Safety and Effectiveness of Metformin in Patients With Diabetes Mellitus and Heart Failure


Systematic Review of Observational Studies Involving 34 000 Patients (Circ Heart Fail. 2013;6:395-402.)

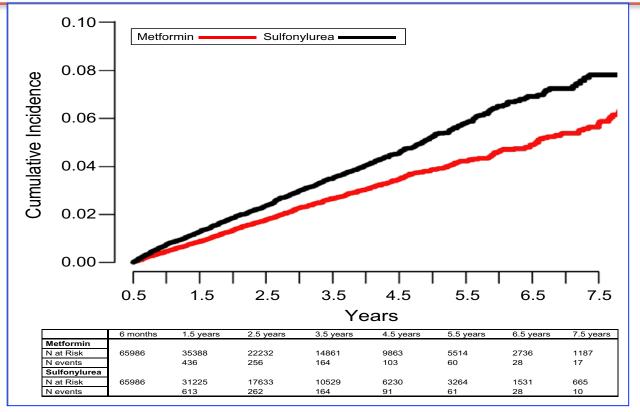
METFORMINA VS CONTROLLI				
	RR			
Mortalità	0.80 (0.74 – 0.87)			
HFrEF	0.91 (0.72 – 1.14)			
HF + CKD	0.81 (0.64 – 1.02)			
Ospedalizzazione	0.93 (0.89 – 0.98)			
nessun rischio di acidosi lattica				

Diabetes			
Metformin should be considered as a first-line treatment of glycaemic control in patients with diabetes and HF, unless contra-indicated.	lla	С	440 ,441

2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

METFORMINA

Effects of acarbose on cardiovascular and diabetes outcomes 🗨 🦒 🕡 in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, Lancet Diabetes Endocrinol 2017:



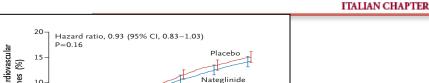
	Acarbose group	(n=3272)	Placebo group (n=3250)		Hazard ratio (95% CI)	p value
	n (%)	Number per 100 person-years	n (%)	Number per 100 person-years		
Primary outcome						
Five-point MACE*	470 (14·4%)	3.33	479 (14·7%)	3.41	0.98 (0.86–1.11)	0.73
Secondary outcomes						
Three-point MACE†	285 (8.7%)	1.93	299 (9·2%)	2.04	0.95 (0.81–1.11)	0.51
Death from any cause	216 (6.6%)	1.42	219 (6.7%)	1.45	0.98 (0.81–1.19)	0.85
Cardiovascular death	145 (4.4%)	0.96	163 (5.0%)	1.03	0.89 (0.71–1.11)	0.29
Fatal or non-fatal myocardial infarction	122 (3.7%)	0.82	108 (3.3%)	0.73	1.12 (0.87–1.46)	0.38
Fatal or non-fatal stroke	75 (2·3%)	0.50	77 (2.4%)	0.52	0.97 (0.70–1.33)	0.83
Hospital admission for unstable angina	174 (5.3%)	1.19	170 (5·2%)	1.17	1.02 (0.82–1.26)	0.87
Hospital admission for heart failure	65 (2.0%)	0.43	73 (2·2%)	0.49	0.89 (0.63–1.24)	0.48
Developed diabetes	436 (13·3%)	3.17	513 (15·8%)	3.84	0.82 (0.71–0.94)‡	0.005
Developed impaired kidney function§	41 (1.3%)	0.33	50 (1.5%)	0.41	0.81 (0.54–1.23)‡	0.33

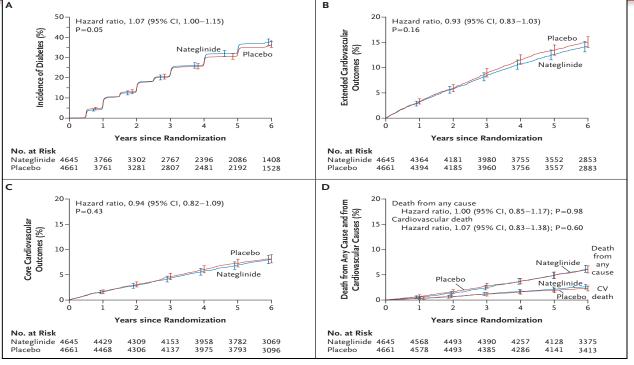
ACARBOSIO

Roma, 8-11 novembre 2018

Cumulative incidence of heart failure hospitalization or cardiovascular death over time

The NEW ENGLAND JOURNAL of MEDICINE

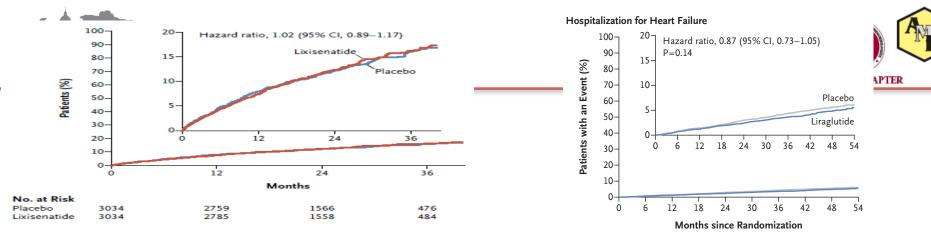

N ENGL | MED 362;2 NEJM.ORG APRIL 22, 2010



The NAVIGATOR Study Group*

Rom

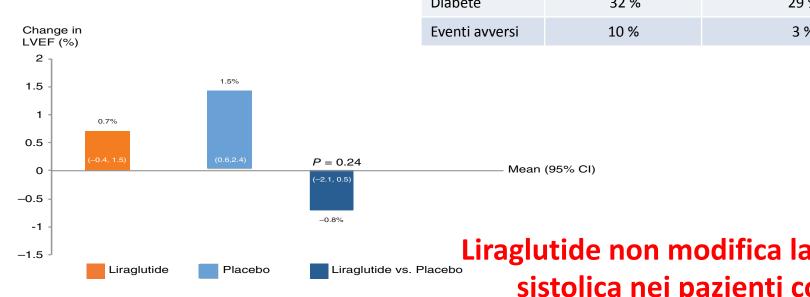
Rischio di ospedalizzazione per scompenso cardiaco Nateglinide vs placebo: 3.1 vs 3.6 eventi per 100 pazienti anno


TIAZOLIDINEDIONI

PROACTIVE: pioglitazone comporta un maggior numero di ospedalizzazioni per HF, 6% vs 4% nell'arco di un follow up di 3 anni; nessuna differenza di mortalità per HF, 1% in entrambi i bracci IRIS: pazienti insulinoresistenti con pregresso stroke, non diabetici, pioglitazone vs placebo HF 3.8% vs 3.7% e ospedalizzazioni per HF 2.6% vs 2.2%

RECORD: rosiglitazone vs metformina e sulfonilurea comporta un maggior rischio di ospedalizzazioni per HF o morti correlate al HF (2.7% vs 1.3%, HR 2.10, Cl 1.35 – 3.27) **DREAM**: rosiglitazone vs placebo in pazienti in prevenzione primaria con alterata tolleranza al glucosio HF 0.5% vs 0.1% (HR 7.03, Cl 1.6 -30.09)

- Questi farmaci non sono raccomandati nei pazienti con scompenso cardiaco e controindicati nei pazienti con NYHA classe III/IV
- Metanalisi di 7 studi con pioglitazone o rosiglitazone indicano un rischio di HF (HR 1.71, Cl 1.21 – 2.4)

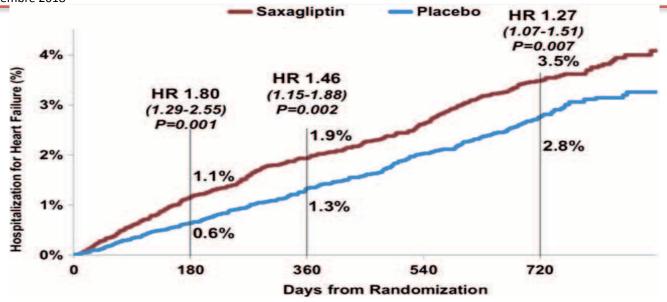

GLUCAGON – LIKE PEPTIDE 1 RECEPTOR AGONISTS

Trial	MACE	% pz con HF all'ingresso	HR ospedalizzazioni per HF
ELIXA (lixisenatide)	NS	22.3 %	0.96 (0.75 – 1.23)
LEADER (liraglutide)	- 13 %	17.8 %	0.87 (0.73 – 1.05)
SUSTAIN 6 (Semaglutide)	- 26 %	23.6 %	1.11 (0.77 – 1.61)

	LIRAGLUTIDE 122 pz	PLACEBO 119 pz
LVEF %	33.7 %	35.4 %
Diabete	32 %	29 %
Eventi avversi	10 %	3 %

Liraglutide non modifica la funzione sistolica nei pazienti con HF

Effetto dei DPP-IV inibitori sul rischio di ospedalizzazione per HF



Trials	% HF	terapia	Ospedalizzazione per HF	Ospedalizzazione per HF (sottogruppo di pz senza HF all'entrata)
TECOS	18 %	METF. 81.6 % INS. 23.2 % TZD 2.7 %	1 (0.83 – 1.19)	no
SAVOR TIMI 53	12.8 %	METF. 69.5 % INS. 41.1 % TZD 6 %	1.27 (1.77 – 1.51)	1.30 (2.03 – 2.65)
EXAMINE	27.9 %	METF. 66.2 % INS. 29.9 % TZD 2.4 %	1.19 (0.90 – 1.58)	1.76 (1.07 – 2.9)

SAVOR TIMI 18

Saxagliptin incrementa del 81 % (HR 1.81, Cl 1.21 – 2.76) il rischio di scompenso cardiaco nei pazienti che non assumono β bloccanti, ma solo del 18 % (HR 1.18, Cl 0.97 – 1.43) in coloro che li assumono

Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies

Evidence-Based Medicine Online First, published on April 21, 2016 as 10.1136/ebmed-2016-110436
Editoria

Clinicians should think twice before prescribing DPP-4 inhibitors for diabetes

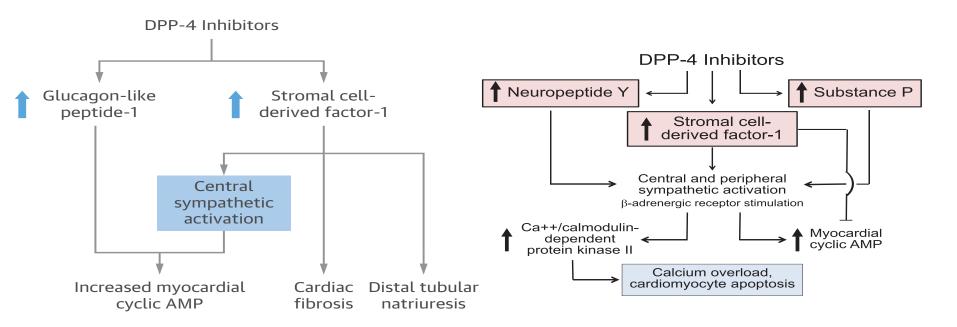
Joshua J Fenton

VIVID 2014	NR	253	52	63	NR	7.8	NR
Laakso 2015	III	235	52	66.6	NR	8.1	NR
Savor-Timi 53 2013	IV	16492	109	65	31.1	NR	10.2
Examine 2015	III	5380	76	60.9	29.5	NR	9.2

controlli	DPP-IV	Rischio Relativo	Rischio per controllo	Rischio per DPP-IV
552/18474 3%	622/18554 3.4%	1.13 (1-1.26)	60 x 1000	+ 8

Qualità dell' evidenza:

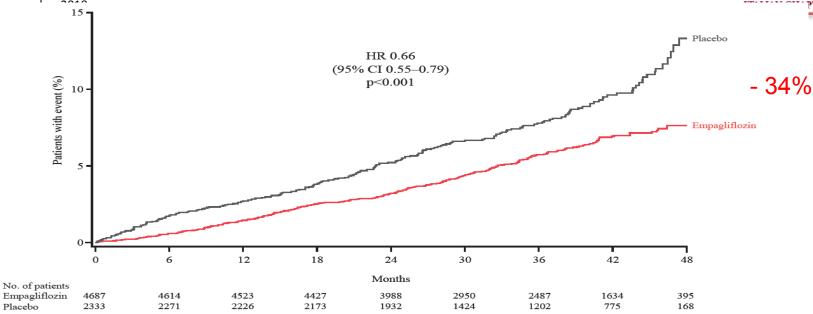
thebmi | BMI2016:352:i610



Worsening Heart Failure During VOL. 6, NO. 6, 2018
the Use of DPP-4 Inhibitors JACC: HEART FAILURE

Pathophysiological Mechanisms, Clinical Risks, and Potential Influence of Concomitant Antidiabetic Medications Do DPP-4 Inhibitors Cause Heart Failure Events by Promoting Adrenergically Mediated Cardiotoxicity? Clues From Laboratory Models and Clinical Trials

Circ Res. 2018;122:928-932.


Attivazione del sistema Simpatico
Alterazione della struttura e funzione del cuore

Milton Parker

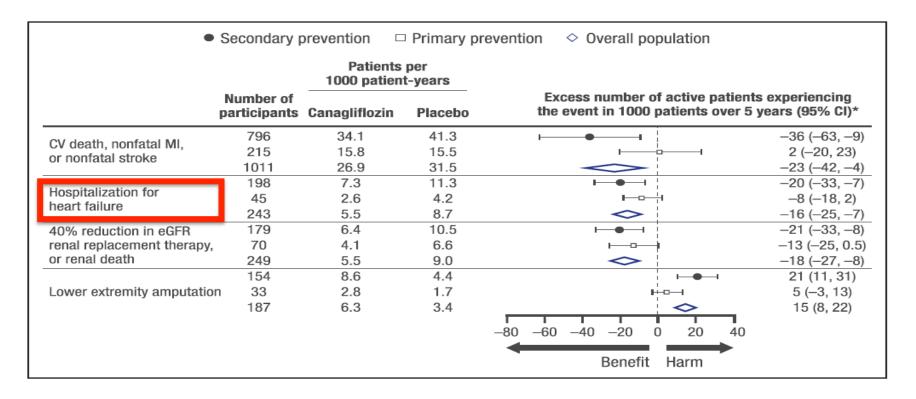
Heart failure hospitalisation or CV death

The NEW ENGLAND JOURNAL of MEDICINE

- -14% 3 point MACE
- -34% di ospedalizzazione per scompenso cardiaco
- -32% della mortalità per tutte le cause

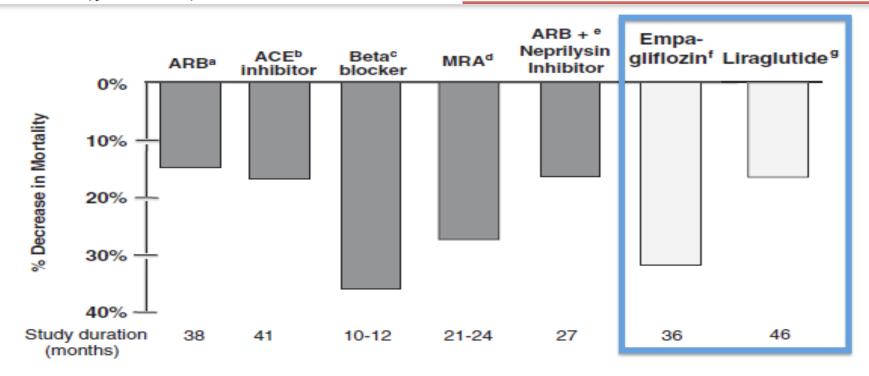
ORIGINAL ARTICLE

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes


Bernard Zinman, M.D., Christoph Wanner, M.D., John M. Lachin, S.C.D., David Fitchett, M.D., Erich Bluhmki, Ph.D., Stefan Hantel, Ph.D., Michaela Mattheus, Dipl. Biomath., Theresa Devins, Dr.P.H., Odd Erik Johansen, M.D., Ph.D., Hans J. Woerle, M.D., Uli C. Broedl, M.D., and Slivio E. Inzucchi, M.D., for the EMPA-REG OUTCOME Investigators

Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events

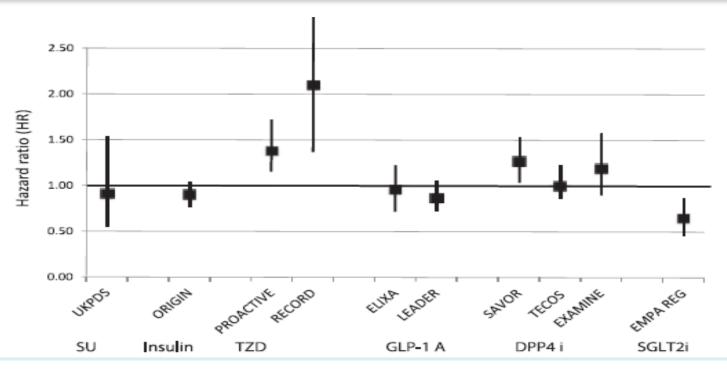
Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study)



Cardiovascular outcome ITALIAN CHAPTER									
	SGLT-2 I	Follow up	MACE	Mortalità cardiovascolar e	Mortalità per tutte le cause	Scompenso cardiaco	IMA non fatale	Stroke non fatale	
CVD-REAL Nordik	Dapagliflozin 94%	0.9	0.78 (0.69 – 0.87)	0.53 (0.40 – 0.71)	0.51 (0.45 – 0.58)	0.70 (0.61 – 0.81)	0.87 (0.73 – 1.03)	0.86 (0.72 – 1.04)	
CVD-REAL US	Canagliflozin 75 – 76% Dapagliflozin 19%	0.5	NA	NA	0.38 (0.29 – 0.50)	0.55 (0.44 – 0.69)	NA	NA	
EASEL		1.6	0.67 (0.60 – 0.75)		0.57 (0.49 – 0.66)	0.57 (0.45 – 0.73)	0.81 (0.64 – 1.03)	0.85 (0.66 – 1.1)	

NOTUIK			,	,	·	·	ŕ	,
CVD-REAL US	Canagliflozin 75 – 76% Dapagliflozin 19%	0.5	NA	NA	0.38 (0.29 – 0.50)	0.55 (0.44 – 0.69)	NA	NA
EASEL		1.6	0.67 (0.60 – 0.75)		0.57 (0.49 – 0.66)	0.57 (0.45 – 0.73)	0.81 (0.64 – 1.03)	0.85 (0.66 – 1.1)
EMPA-REG	Empagliflozin 100%	3.1	0.86 (0.74 – 0.99)	0.62 (0.49 – 0.77)	0.68 (0.57 – 0.82)	0.65 (0.50 – 0.85)	0.87 (0.70 – 1.09)	1.24 (0.92 – 1.67)
CANVAS	Canagliflozin 100%	3.6	0.86 (0.75 – 0.97)	0.87 (0.72 – 1.06)	0.87 (0.74 – 1.01)	0.67 (0.32 – 0.87)	0.85 (0.69 – 1.05)	0.90 (0.71 – 1.15)

David H. Fitchett^{1*}, Jacob A. Udell², and Silvio E. Inzucchi³


Comparison of all-cause mortality reduction observed in heart failure trials

European Journal of Heart Failure (2016) doi:10.1002/ejhf.633

David H. Fitchett^{1*}, Jacob A. Udell², and Silvio E. Inzucchi³

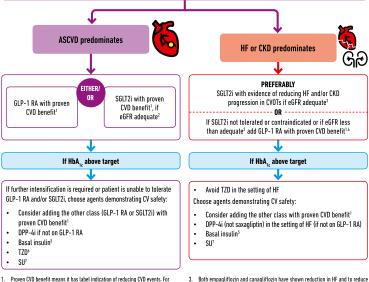
Impact of glucose-lowering drugs on incidence of hospitalization for heart failure

STANDARD ITALIANI PER LA CURA DEL DIABETE MELLITO

2018	Metform	Acarbose	GLP1RA	Gliflozine	Gliptine	Pioglitazo	SU/glinio	Insulina k sale	Insulina k sal-bolus
Interazioni con altri farmaci	-	-	-	-	-	+	++	-	-
Ipoglicemia	-	-	-	-	-	-	++	+++	+++
Aumento di peso	-	-	-	-	-	++	+	+++	+++
Pancreatiti	-	-	+/-	-	+	-	-	-	-
Fratture ossee	-	-	-	+/- ^a	-	+++	-	-	-
Scompenso cardiaco	-	-	-	-	+/- ^b	++	+	-	-
Disturbi gastrointestinali	++	+++	++	+/-	-	-	-	-	-
Infezioni genitali	-	-	-	+	-	-	-	-	-
Acidosi lattica	+	-	-	-	-	-	-	-	-
Chetoacidosi	-	-	-	+	-	-	-	-	-
Amputazioni minori	-	-	-	+/- ^a	-	-	-	-	-

EFFETTI COLLATERALI E RISCHI DEI FARMACI PER IL DIABETE DI TIPO 2

CHOOSING GLUCOSE-LOWERING MEDICATION IN THOSE WITH ESTABLISHED ATHEROSCLEROTIC CARDIOVASCULAR DISEASE (ASCVD) OR CHRONIC KIDNEY DISEASE (CKD)


Use metformin unless contraindicated or not tolerated

If not at HbA, target:

- · Continue metformin unless contraindicated (remember to adjust dose/stop metformin with declining eGFR)
- Add SGLT2i or GLP-1 RA with proven cardiovascular benefit¹ (See below)

If at HbA, target:

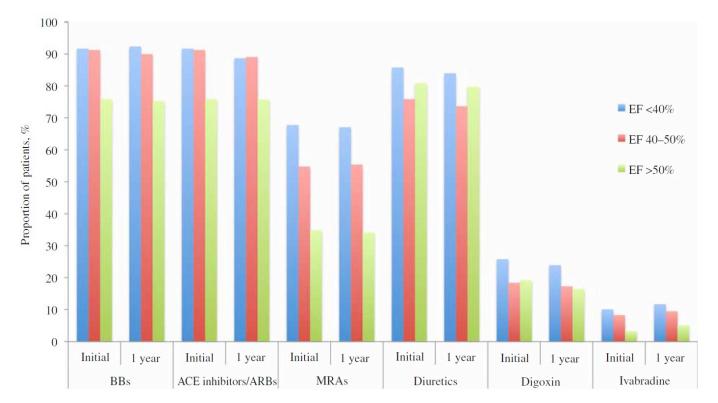
- · If already on dual therapy, or multiple glucose-lowering therapies and not on an SGLT2i or GLP-1 RA, consider switching to one of these agents with proven cardiovascular benefit¹ (See below)
- OR reconsider/lower individualised target and introduce SGLT2i or GLP-1 RA
- OR reassess HbA, at 3 month intervals and add SGLT2i or GLP-1 RA if HbA, goes above target

1. Proven CVD benefit means it has label indication of reducing CVD events. For GLP-1 RA strongest evidence for liraglutide > semaglutide > exenatide extended CKD progression in CVOTs


indicated level of eGFR for initiation and continued use

- release. For SGLT2i evidence modestly stronger for empagliflozin > canagliflozin. 4. Caution with GLP-1 RA in ESRD 2. Be aware that SGLT2i vary by region and individual agent with regard to
 - 5. Degludec or U100 glargine have demonstrated CVD safety 6. Low dose may be better tolerated though less well studied for CVD effects
 - 7. Choose later generation SU to lower risk of hypoglycaemia

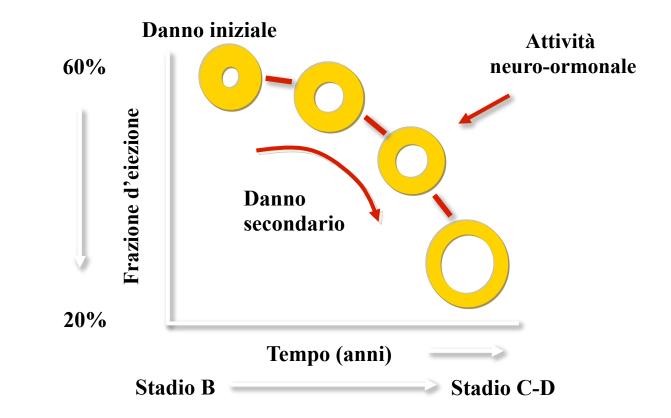
Aspetti terapeutici


Vasodilatatori

ACE - inibitori?

Aspetti terapeutici

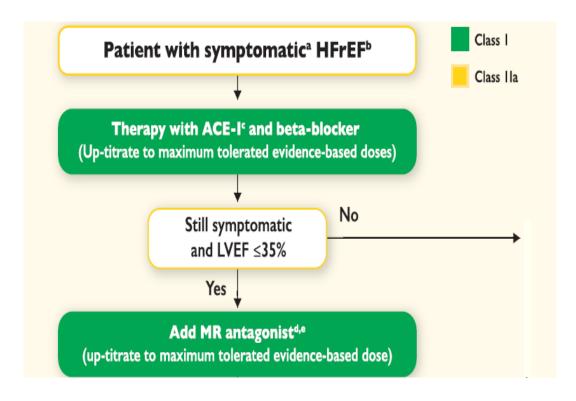
Chioncel O Eur J Heart Fail. 2017 doi: 10.1002/ejhf.813.



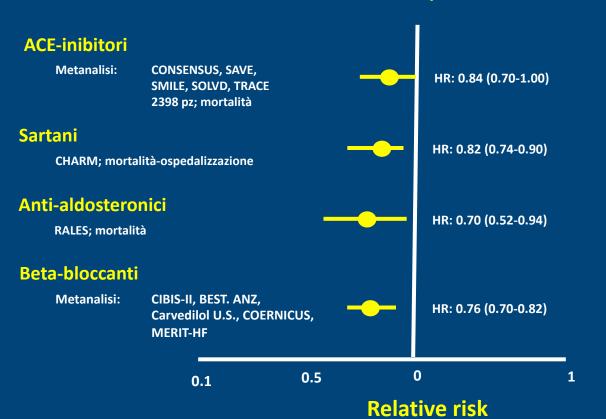
HF-rEF


Miocardiopatia diabetica e scompenso cardiaco:

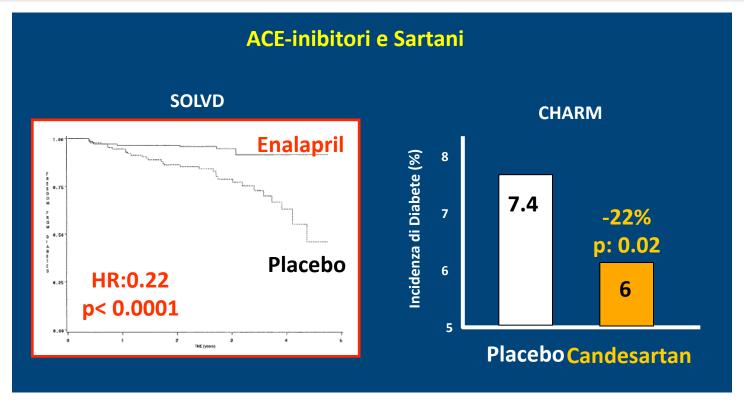
ITALIAN CHAPTER


Aspetti terapeutici

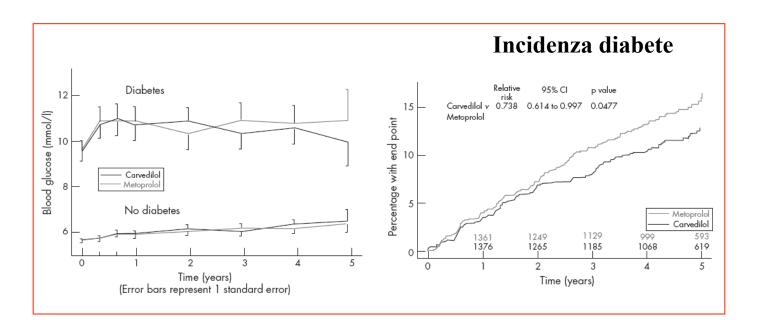
Aspetti terapeutici HFr-EF



Aspetti terapeutici HFr-EF


Riduzione della morbilità e mortalità nel paziente diabetico

Aspetti terapeutici HFr-EF



Uso dei beta-bloccanti nel paziente diabetico con scompenso (Studio COMET)

Modello cardiorenale

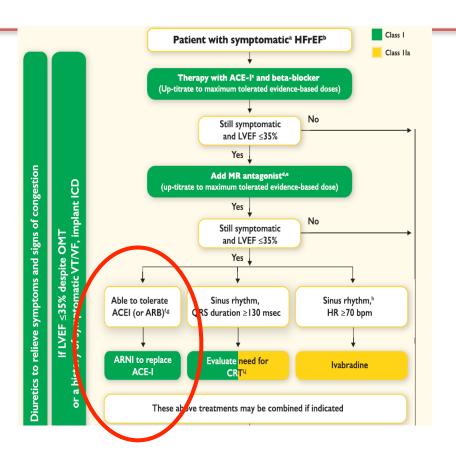
• Diuretici

Modello cardiocircolatorio

- Inotropi
- Vasodilatatori

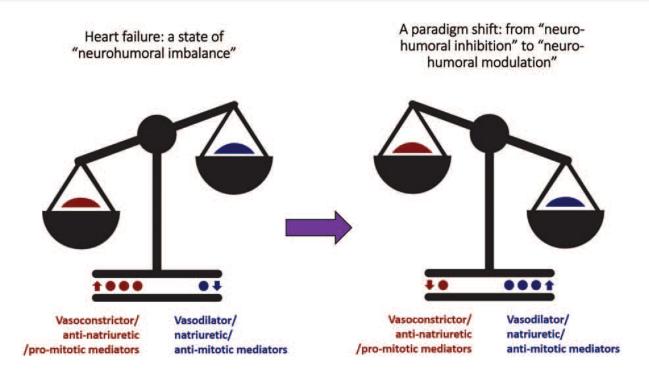
Modello neurormonale

- ACE inibitori
- β-bloccanti
- ARB
- ARNi
- Antag. aldosterone

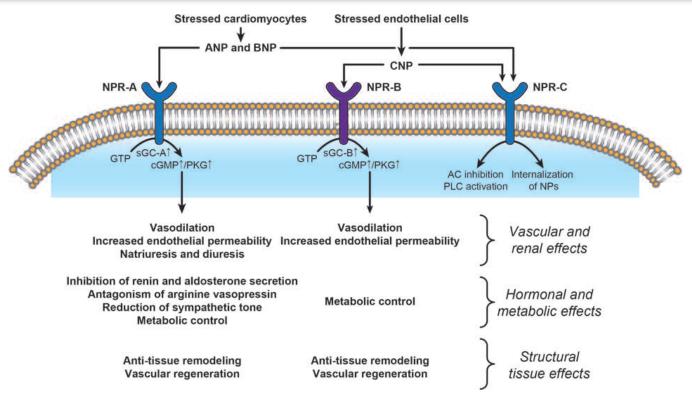

Altre strategie

- Modulazione neurormonale
- CRT
- Ivabradina

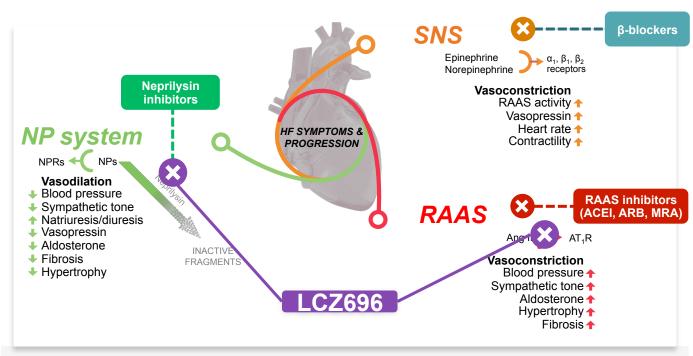
HF-rEF: Aspetti terapeutici



HF-rEF: Modulazione neurormonale

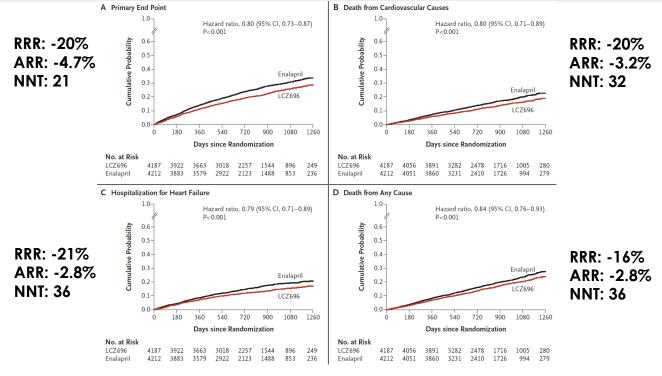


HF-rEF: Aspetti terapeutici

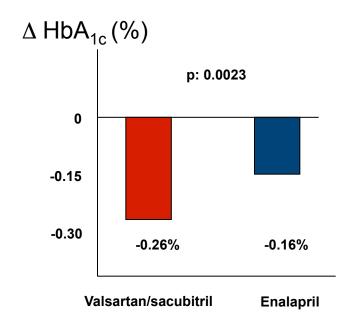


Diez G. European Journal of Heart Failure 2016

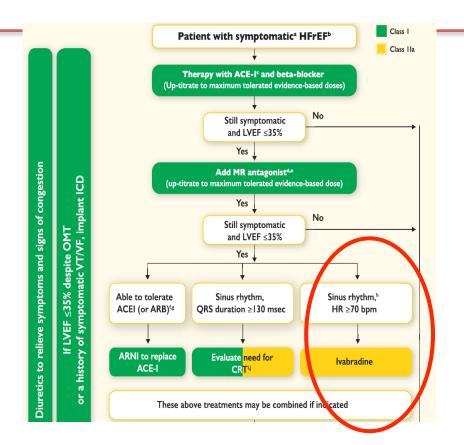
HF-rEF: Modulazione neurormonale



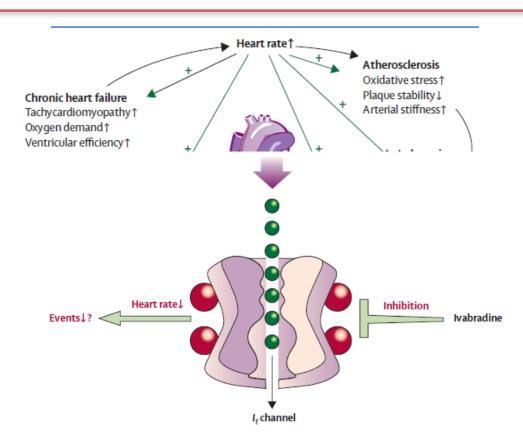
HF-rEF: Modulazione neurormonale





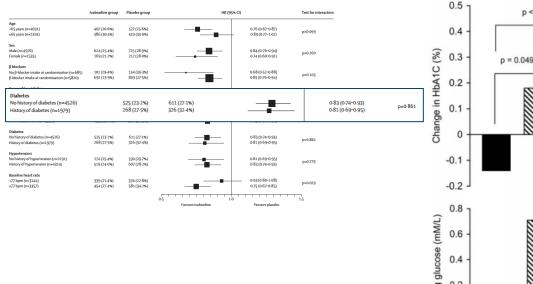


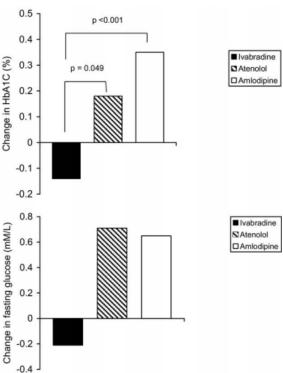
HF-rEF: Modulazione neurormonale e diabete



Controllo della frequenza cardiaca

Controllo della frequenza cardiaca


Studio Shift


Endpoints	HR	95% CI	RRR	p value	ARR	NTT
Endpoint primario composito	0.82	[0.75;0.90]	- 18%	p<0.0001	- 4,3%	23
Morte CV	0.91	[0.80;1.03]	- 9%	p=0.128	-1,4%	71
Mortalità Totale	0.90	[0.80;1.02]	- 10%	p=0.092	- 1,2%	83
Morte per scompenso	0.74	[0.58;0.94]	- 26%	<i>p</i> =0.014	- 1,2%	83
Ospedalizzazione Totale	0.89	[0.82;0.96]	- 11%	p=0.003	- 3,6%	28
Ospedalizzazione per CV	0.85	[0.78;0.92]	- 15%	p=0.0002	- 4,5%	22
Ospedanzzazione per ev	0.03	[0.70,0.72]	- 13 / 0	<i>p</i> 0.0002	- 4,5 /0	

Controllo della frequenza cardiaca

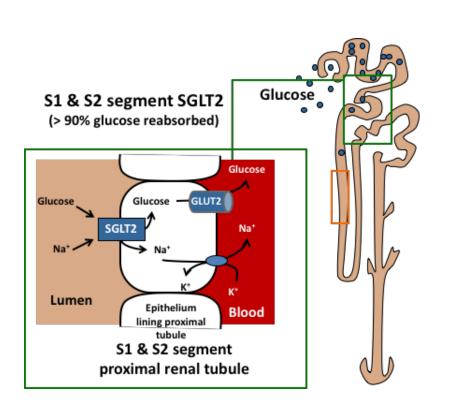
Swedberg K et al. Lancet. 2010;376:875-85.

Borer JS Am J Cardiol. 2010;105:29-35.

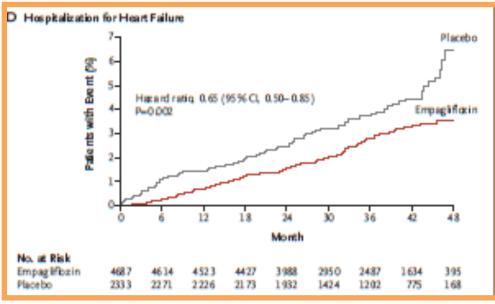
Scompenso cardiaco e comorbilità

Recommendations for the treatment of other co-morbidities in patients with heart failure

Recommendations	Class a	Level ^b	R ef ^c
Iron deficiency		•	
Intravenous FCM should be considered in symptomatic patients with HFrEF and iron deficiency (serum ferritin <100 μ g/L, or ferritin between 100–299 μ g/L and transferrin saturation <20%) in order to alleviate HF symptoms, and improve exercise capacity and quality of life.	lla	A	469, 470
Diabetes			
Metformin should be considered as a first-line treatment of glycaemic control in patients with diabetes and HF, unless contra-indicated.	lla	С	440 ,441


Treatments not recommended of other co-morbidities in patients with heart failure

Recommendations	Class ^a	Level ^b	R ef ^c		
Sleep apnoea					
Adaptive servo-ventilation is not recommended in patients with HFrEF and a predominant central sleep apnoea because of an increased all-cause and cardiovascular mortality.	Ш	В	473		
Diabetes					
Thiazolidinediones (glitazones) are not recommended in patients with HF, as they increase the risk of HF worsening and HF hospitalization.	Ш	A	209, 210		
Arthritis					
NSAIDs or COX-2 inhibitors are not recommended in patients with HF, as they increase the risk of HF worsening and HF hospitalization.	Ш	В	211–213		



Miocardiopatia diabetica

EMPA-REG OUTCOME Pooled Analysis (N=7020)

Take Home Message

- La coesistenza di diabete di tipo 2 e scompenso cardiaco è frequente nel 30 – 40% dei pazienti
- Le cause dello scompenso sono nell'ordine: la coronaropatia aterosclerotica, l'ipertensione arteriosa e la cardiomiopatia diabetica
- Il fenotipo HFpEF è il più frequente e nella cardiomiopatia diabetica precede sempre quello a HFrEF
- Non ci sono particolari limitazioni nel trattamento dello scompenso cardiaco nel paziente diabetico

Take Home Message

- Abbiamo limitazioni nella terapia del diabete di tipo 2 con scompenso cardiaco
- La metformina è secondo le linea guida il farmaco di prima scelta
- Tra i nuovi farmaci gli SGLT-2 inibitori hanno dimostrato, sia nei trial di sicurezza cadiovascolare, sia negli studi real world, una indubbia efficacia e superiorità nel ridurre le ospedalizzazioni per scompenso cardiaco