

Roma, 8-11 novembre 2018

Bone turnover markers in clinical practice

Eugene McCloskey

Professor of Adult Bone Diseases, The Mellanby Centre, Department of Human Metabolism Faculty of Medicine, Dentistry and Health, University of Sheffield, UK

Disclosures

Consultant/Advisor/Speaker for:

 ActiveSignal, AgNovos, Amgen, AstraZeneca, Consilient Healthcare, Fresenius Kabi, GSK, Hologic, Internis, Lilly, Medtronic, Merck, Novartis, Pfizer, Roche, Sanofi-Aventis, Servier, Synexus, Tethys, UCB, Warner Chilcott

Research support:

o Including above plus ARUK, I3 Innovus, MRC, IOF, Unilever

• Financial holdings:

o None

BTM in Metabolic Bone Diseases in Adults

- Generalised diseases
 - Osteoporosis
 - Primary hyperparathyroidism
 - Osteomalacia
- Focal bone disease
 - Paget's disease
 - Fibrous dysplasia
 - Metastatic cancer
- Rare bone disease
 - Hypophosphatasia

Bone Turnover Markers

Collagen degradation products

- Pyridinium cross-links of collagen
 - Deoxypyridinoline (DPD)
 - C- and N-telopeptides (CTX, CTX-MMP, NTX)
- Tartrate-resistant acid phosphatase (TRACP)

Matrix protein

- Osteocalcin (OC)
- Propeptides of type I procollagen
 - C- and N-terminal (PICP, PINP)

Enzyme

• Bone alkaline phosphatase (Bone ALP)

Controlling variability

Use markers with least variability

Timed sample

- Usually morning
- Fasting

Brenda, age 63

- Wrist fracture at 62
 - Menopause at 39, no HRT

Biochemical markers after ankle fracture

Size of marker increase relates to size of bone fractured

Ingle BM et al, Osteoporos Int 1999; 10:408-15

Brenda, age 63

- Wrist fracture at 62
 - Menopause at 39, no HRT
- Is there a role for BTM to predict her:
 - Rate of bone loss?
 - Future fracture risk?

High bone turnover predicts rapid bone loss

Radius BMD 4 yr rate of change, %

Garnero et al JBMR 1999;14:1614-1621

High bone turnover predicts rapid bone loss in populations but not individuals

Change in BMD (%/yr)

Change in BMD (%/yr)

U 11 5 4 Μ 7 4 9 L 5 7 8 U Μ L **UNTX**

Delta BMD

U NTX Kappa = 0.125 (95%Cl, 0.002 to -0.152)

Rogers and Eastell, J Bone Miner Res, 2000

BTM predict fracture risk independently of BMD

Forest plot showing relationship between sCTX and hip fracture risk

Meta-analysis: Johansson et al. Calcified Tissue International 2014:94:560-567

Predictive ability of BTM attenuates over time

Relative risk of fracture per SD osteocalcin

Luukinen et al, JBMR 2000;15:2473-2478

Brenda, age 63

DXA confirms osteoporosis

- Can BTM be used to:
 - Select appropriate treatment to reduce her risk of further fracture?

T score -3.3

T score -2.8

Can BTM inform choice of treatment?

- Hypothesis
 - High baseline bone turnover treat with anti-resorptive
 - Low baseline bone turnover treat with anabolic

Baseline BTM predicts change in BMD

Brown et al, JBMR 2008:24;153

Baseline BTM predict change in BMD

Alendronate

 Higher baseline BTM associated with greater spine and hip BMD increase over 3 years¹

Teriparatide

 Higher baseline BTM associated with greater spine BMD increase over 1.5 years²

1. Greenspan J Clin Endocrinol Metab 2005;90:2762–2767 2. Chen J Bone Miner Res 2005;20:962–970

Baseline BTM have limited predictive ability for fracture outcomes with alendronate

Low PINP<42 ng/mL

- Higher PINP predicted greater non-vertebral fracture reduction in osteoporotic women
- Higher bone ALP predicted greater vertebral fracture reduction in osteopenic women
- No significant predictive ability for CTX in this cohort

Fracture intervention trial N=6186 Bauer J Bone Miner Res 2006;21:292-299

Brenda, age 63

Weekly oral alendronate

- Can BTM be used to:
 - Monitor her response to treatment?

T score -3.3

T score -2.8

Greater suppression in bone turnover is associated with greater reduction in fracture risk

Lasofoxifene
Arzoxifene
Raloxifene
Ibandronate IV
Risedronate
Ibandronate oral

Alendronate

Zoledronic acid

Bauer DC, et al. J Bone Miner Res. 2018 Jan 10. [Epub ahead of print]

-55

-55

Change in BTM with alendronate, TRIO study

Naylor KE, et al. Osteoporos Int. 2016 Jan;27(1):21-31

Targets for anti-resorptive treatment

- Responder defined by change:
 - Greater than least significant change
 - To level associated with lower fracture risk
 - Clinical trial data
 - Lower half of the premenopausal reference range

Can we identify those who fail to reach the target and do they do worse?

CTX, type 1 C-telopeptide

*TRIO Study: Randomised study of alendronate, risedronate and ibandronate

Denosumab after alendronate

Denosumab^A Alendronate

Kendler et al, JBMR 2010; Roux et al, ECTS 2009

Oral bisphosphonate monitoring algorithm

Eastell et al. European Journal of Endocrinology (2018) 178, R19–R31

Monitoring anabolic treatment

Change from baseline (% - mean ± SE)

Arlot et al, JBMR 2005;20:1244-1253

Teriparatide monitoring algorithm

Eastell et al. European Journal of Endocrinology (2018) 178, R19–R31

Monitoring offset

BTM to monitor offset of bisphosphonate treatment

BTM and offset – analysis from the TRIO study

BTM and offset – analysis from the TRIO study

	Criteria	N (%)	Mean TH BMD	Mean difference (95%
			change (95% Cl) over 2 years	CI)
СТХ	>mean	32 (65)	-2.34 (-3.10 to -1.58)	
	<mean< td=""><td>17 (35)</td><td>-0.29 (-1.54 to 0.96)</td><td>2.043 (0.70 to 3.39) **</td></mean<>	17 (35)	-0.29 (-1.54 to 0.96)	2.043 (0.70 to 3.39) **
	>LSC	32 (65)	-2.57 (-3.36 to -1.78)	
	<lsc< td=""><td>17 (35)</td><td>0.145 (-0.77 to 1.05)</td><td>2.714 (1.48 to 3.95) ***</td></lsc<>	17 (35)	0.145 (-0.77 to 1.05)	2.714 (1.48 to 3.95) ***
PINP	>mean	21 (43)	-2.35 (-3.41 to -1.29)	
	<mean< td=""><td>28 (57)</td><td>-1.09 (-2.01 to -0.17)</td><td>1.26 (-0.10 to 2.63)</td></mean<>	28 (57)	-1.09 (-2.01 to -0.17)	1.26 (-0.10 to 2.63)
	>LSC	35 (71)	-2.10 (-2.91 to -1.29)	
	<lsc< td=""><td>14 (29)</td><td>-0.44 (-1.71 to 0.83)</td><td>1.66 (0.19 to 3.13) *</td></lsc<>	14 (29)	-0.44 (-1.71 to 0.83)	1.66 (0.19 to 3.13) *

Summary – BTM in clinical practice

- Useful for monitoring response
- Useful for guiding second-line treatment choice
- May be useful for monitoring offset
- No role yet in fracture prediction or first-line treatment choice
- Consider variability and validity