SGLT-2i from efficacy to effectiveness, what RWE can do: The CVD REAL Study

Dr. Peter Fenici, MD PhD FRCPE GEMBA

Head of Innovation, Cardiovascular Renal Metabolism (CVRM), Global Medical Affairs Academy House AstraZeneca, Cambridge, UK

Disclaimer and (Conflict) "Duality" of Interests

The opinions expressed in this presentation are the unique and very personal point of view of the author and do not necessarily reflect the position of any of the institutions or companies the author have been affiliated or is currently employed by

- AstraZeneca full time employee & Former Global Medical Affairs Senior Leader Diabetes (dapagliflozin)
- Conceived and developed the CVD REAL study, that is sponsored by AZ
- However, analyses and data interpretation by an independent Academic Scientific Committee
- Passionate about:
 - properly designed RWE
 - pragmatic trials
 - possibly, to impact clinical practice with robust evidence

- Do we really need RWE, as we have RCTs already?
- Integrating CVD-REAL and CVOTs, where is the "true effect"?
- Is it the regulatory environment changing position about RWE?

• CVD-REAL: clinical implications, overall impact and future directions

What is Real World Evidence all about?

- "Everything that goes beyond what is normally collected in the Phase 3 clinical trials program in term of efficacy"¹
- "Derived from multiple sources outside typical clinical research setting"2
- "A measure in understanding health care data collected under real-life practice circumstances"1
- "Data derived from medical practice among heterogenous set of patients in real-life practice settings"³
- Real world evidence (RWE) in medicine means evidence obtained from real world data (RWD), which are observational data obtained outside the context of randomized controlled trials (RCTs) and generated during routine clinical practice. RWE is generated by analysing data which is stored in electronic health records (EHR), etc.. It may be derived from retrospective or prospective observational studies and observational registries⁸
- In the USA the 21st Century Cures Act required the FDA to expand the role of real world evidence⁸

1. Real-Life Data. A Growing Need. Available at http://www.ispor.org/News/articles/Oct07/RLD.asp

2. Sherman RE et al. N. Engl J Med 2016;375:2293-7

3. Network for Excellence in Health 2015. RWE A new Era for Health Care Innovation. <u>http://www.nehi.net/publications/66-real-wolrd-evidence-a-era-for-health-care-innovation/view</u> 4. Real-World Evidence — What Is It and What Can It Tell Us? The New England Journal of Medicine, Dec. 6, 2016

5. Network for Excellence in Health Innovation. Real world evidence: a new era for health care innovation. September 2015. available at http://www .nehi .net/ writable/ publication_files/ file/ rwe issue brief final .pdf

6. Food and Drug Administration. Use of real-world evidence to support regulatory decision-making for medical devices: draft guidance for industry and Food and Drug Administration staff. July 27, 2016.http://www.fda gov/ downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM513027.pdf

7. Berger, Marc L. et al. "Good Practices for Real-world Data Studies of Treatment And/or Comparative Effectiveness: Recommendations from the Joint ISPOR-ISPE Special Task Force on Real-world Evidence in Health Care Decision Making." Pharmacoepidemiology and Drug Safety 26.9 (2017): 1033–1039. PMC. Web. 5 May 2018.

8. https://en.wikipedia.org/wiki/Real world evidence

Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness

Jacqueline Corrigan- Curay, JD, MD Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland.	For hundreds of years, the development of new medi- cal treatments relied on "real-world" experience. Discov- eries such as citrus fruit curing scurvy described in the 1700s or insulin as a treatment for diabetes in the 1920s long preceded the advent of the modern randomized clinical trial. What these diseases had in common was a reliable method of diagnosis, a correlicitable clinical course.	record nized est in efficie betwe define delive
Leonard Sacks, MD Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland.	and a large and obvious effect of the treatment. In the late 1940s, the medical community began to adopt the use of randomized clinical designs for drug trials. The recognition that anecdotal reports based on clinical practice observations were often	ety of U Admir evalua dicatio
Janet Woodcock, MD Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland.	misleading led to the nearly complete replacement of this "real-world evidence" (RWE) approach to evi- dence generated using the modern clinical trial model. Although moving medical science toward greater scientific rigor, this transformation simultaneously diminished the use (and minimized the value) of evi- dence generated from practice-based observations.	study cal ev efits o of RW lished Ti about

limitations of traditional trials, has renewed interthe use of real-world data (RWD) to enhance the ncy of research and bridge the evidentiary gap en clinical research and practice. RWD can be d as data relating to patient health status or the v of health care routinely collected from a varisources such as the FHR and administrative data nder the 21st Century Cures Act, the Food and Drug istration is tasked with developing a program to te the use of RWE to support approval of new in ons for approved drugs or to satisfy postapproval requirements ² RWE can be defined as the cliniidence regarding the usage and potential ben r risks of a medical product derived from analysis /D. A framework for this program will be pub by the end of 2018

s (EHRs), together with rising costs and recog

e) of evirvations. about drug safety, drawing on claims and pharmacy data

[Real-world data] can be defined as data relating to patient health status or the delivery of health care routinely collected from a variety of sources, such as the EHR and administrative data.

6	support drawing strong causal inferences regarding the efficacy of treatments, and thereby contribute to the substantial evidence of effectiveness necessary for regu- latory approval. On the other hand, such trials do have important limitations, including high costs, extensive re- source requirements, and often long timelines. Restric-	areas in which of effectivene the quality and used, and the dence. Throug perience with
Corresponding	uve enrollment criteria and the concentration of that sites	not capture m
Autnor: Janet	in certain health systems make it challenging for some	port new indic
Food and Drug	patients to enroll, including those with comorbidities, es-	vide more gra
Administration.	pecially if mobility or cognitive abilities are affected. Thus,	sults, imaging
10903 New Hampshire	the trial population may not reflect the larger popula-	data are ofter
Ave, Silver Spring,	tion that will use the drug.	due to entry y
MD 20993	The increasing accessibility of digital health data	toms. This is a
(janet.woodcock	The increasing accessionity of digital health data,	terns. mis is i
@fda.hhs.gov).	spurred in large part by the transition to electronic health	presently gen

as in which RWD may be used to generate evidence effectiveness. This will require both an assessment of quality and suitability of underlying data that will be ed, and the analytical methods to generate the evinecr. Through Sentinel, the FDA has considerable exrience with the use of claims data, but claims data will capture many of the dincal and points used to supt new indications for approved drugs. EHRs can prolemore granular clinical data, including laboratory reters, imaging, and clinical assessments; however, EHR ta are often unstructured and at times inconsistent et o entry variations across providers and health sysns. This is not suprising because EHR data are not esently generated with research goals in mind.

jama.com

JAMA September 4, 2018 Volume 320, Number 9

RWE, RWD and "CCPD" (Current Clinical Practice Data)

- RWD: data derived from the real world
 - Routine healthcare, clinical or business operations
 - Observation of free-living humans
- RWE: evidence relevant to the real world
- RWD does not always make RWE
- RWE usually starts with RWD
- "CCPD" might not translate into "RW" at all

RWD, real world data; RWE, real world evidence

Academy of Medical Sciences. Next steps for using real world evidence. 2018. Available at: <u>https://acmedsci.ac.uk/more/news/next-steps-for-using-real-world-evidence</u> (Accessed June 2018)

Different stakeholders have different interests in RWE

Economic impact (budget impact model, short term models, health care resource utilization/cost data), reimbursement;³ pricing;³ cost-effectiveness;¹ formulary placement¹

To what extent a treatment is likely to work for **patients like them** in real life⁴

1. Cziraky M and Pollock M. Applied Clinical Trials 2015. Available at: <u>http://www.appliedclinicaltrialsonline.com/real-world-evidence-studies</u> (Accessed June 2018); 2. Sherman RE *et al. N Engl J Med* 2016;375:2293–7; 3. ISPOR. Real-Life Data: A Growing Need. Available at: <u>https://www.ispor.org/News/articles/Oct07/RLD.asp</u> (Accessed June 2018); 4. de Lusignan S *et al. J Innov Health Inform* 2015;22:368–73

Real world evidence can inform ...

- Outcomes research
- Research on healthcare systems
- Quality improvement
- Safety surveillance
- Therapeutic development
- Well-controlled effectiveness studies
- And can provide information on how factors, such as clinical setting and provider, and health system characteristics influence treatment effects and outcomes

THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS

What does real world evidence mean?

RWE is the use of RWD and analytics to discover, develop, deliver and provide new insights on healthcare interventions

Availability of **RWD** and use of appropriate analytical methods create a big opportunity to accelerate/increase patient access to innovative medicines

RWE differs from the traditional RCT approach because it uses primary and secondary data from the real world instead of data generated from a standard, randomized patient base

RWE does not replace results from RCTs, but is complementary because it offers a broader range of data to generate the evidence necessary for medical and healthcare decision-makers

RCTs and RWE form a continuum of evidence

What are we measuring, moving beyond clinical trials

In RCT:

 Efficacy is the extent to which an intervention does more good than harm under ideal circumstances

In RWE:

• Effectiveness is the extent to which an intervention does more good than harm when provided <u>under the usual circumstances of healthcare practice</u>

In HE:

 Efficiency is the analysis of the incremental cost related to the unity of quality of life gained or lost (e.g. QALY, ICER, NNT, NNH, DALY), however Patient's is different from HCP's or Payer's prospective

The importance of RWE for advancing drug safety

"...And at the end of a drug development program, RCTs can leave critical questions unanswered, particularly about the effects or impacts of a drug after it gets into the 'real world'..."¹

RCT, randomized controlled trial; RWE, real world evidence

1. CDER Drug Safety Priorities 2017. Available at: https://www.fda.gov/downloads/Drugs/DrugSafety/UCM605229.pdf (Accessed 7 July 2018)

	Pts		
	Randomized	Chance of	Comments
Deaths	(Risk = 10%)	Type II Error*	on Sample Size
0-50	< 500	> 0.9	Utterly inadequate
50-150	1000	0.7-0.9	Probably inadequate
150-350	3000	0.3-0.7	Possibly inadequate
350-650	6000	0.1-0.3	Probably adequate
> 650	10000	< 0.1	Adequate

*Probability of failing to achieve p < .01 if risk reduction = 25%

Is it feasible, affordable and cost effective? Do your maths

Different types of studies require different amounts of resources

 Are the resources required justified by the value of the study?

Study	Personnel	Finance	Time
Systematic literature review	Ť	\$	-
Analysis of administrative claims data/registry data	ŤŤ	\$	-
Analysis of electronic medical records	ŤŤ	\$\$	
Prospective, non-interventional study	ŤŤŤ	\$\$\$	
Pragmatic clinical trial	ŤŤŤŤ	\$\$\$\$	
RCT	ŤŤŤŤ	\$\$\$\$	

1. Modified from Dialogues Clin Neurosci 2011;13:217-224. 2. NEJM 2016;375 (5):454-463. Adapted from BMJ 2015;350:h2147 https://www.precis-2.org

Role of "RWE" and "Pragmatic design"... is it really so "all new stuffs"!

From 1967 to 2009 ... from 1984 to 2016 !

	-		
STATISTICS IN MEDICINE, VOL. 3, 375–384 (1984)		J. chron. Dis. 1967, Vol. 20, pp. 637–648. Pergamon Press Ltd. Printed in Great Britain	BEVIER Journal of Clinical Epidemiology 62 (2009) 499–505 DRIGINAL ARTICLE
TYING CLINICAL RESEARCH TO PATIENT CARE BY USE OF AN OBSERVATIONAL DATABASE MARK A. HLATKY, KERRY L. LEE, FRANK E. HARRELL, JR., ROBERT M. CALIFF, DAVID B. PRYOR, DANIEL B. MARK AND ROBERT A. ROSATI Division of Cardiology. Department of Medicine and the Division of Biometry. Department of Community and Family		EXPLANATORY AND PRAGMATIC ATTITUDES IN THERAPEUTICAL TRIALS DANIEL SCHWARTZ and JOSEPH LELLOUCH Unité de Recherches Statistiques, Institut National de la Santé et de la Recherche Medicale, 94 Villejuif, France	Explanatory and Pragmatic Attitudes in Therapeutical Trials Daniel Schwartz, Joseph Lellouch Unité de Recherches Statistiques, Institut National de la Santé et de la Recherche Medicale, 94 Villejuij, France Accepted 30 January 2009
Medicine, Duke University Medical Center, Durham, North Carolina, U.S.A. The proposition that some inherent logical incompetence attaches to an inference based on observational, as distinguished from experimental, evidence seems to have little to commend it beyond the great positiveness with which it is sometimes asserted. JEROME CORNFIELD ¹ Careful observation forms the foundation upon which all science is built. Performing experiments is, of course, a major scientific activity, but there are several scientific disciplines, such as astronomy, geology and evolutionary biology to name but a few, in which meaningful experimentation is impossible and careful observation and analysis of data are the only methods available. Experimentation in clinical medicine takes the form of the randomized controlled trial (RCT), and it has been asserted that only randomized trials can provide valid conclusions about therapeutic efficacy. As in other fields, however, there have been important advances in medical therapeutics as a result of careful observation and analysis. Our thesis is that the credibility of any investigation		(Received 6 January 1967: in revised form 24 March 1967) It is the thesis of this paper that most therapeutic trials are inadequately formulated, and this from the earliest stages of their conception. Their inadequacy is basic, in that the trials may be aimed at the solution of one or other of two radically different kinds of problem; the resulting ambiguity affects the definition of the treatments, the assessment of the results, the choice of subjects and the way in which the treatments are compared. It often occurs that one type of approach is ethically less defensible than the other, or may even be ruled out altogether on ethical grounds. We postpone consideration of this aspect of the question until a later section.	It is the thesis of this paper that most therapeutic trials are inadequately formulated, and this from the earliest stages of their conception. Their inadequacy is basic, in that the trials may be aimed at the solution of one or other of two radically different kinds of problem; the resulting ambiguity affects the definition of the treatments, the assessment of the results, the choice of subjects and the way in which the treatments are compared. It often occurs that one type of approach is ethically less defensible than the other, or may even be ruled out altogether on ethical grounds. We postpone consideration of this aspect of the question until a later section. © 2009 Elsevier Inc. All rights reserved. Group A 30 days 30 day
depends mainly upon its adherence to high scientific standards in obtaining data and the care taken in analysing data. When proper methodology is used, we believe that the observational database can play an important complementary role to the RCT in assessing the efficacy of therapy. In this article we first briefly outline the methods that should be used in modern observational studies. We then consider certain limitations to the use of RCT results in guiding clinical decisions about individual patients. Next we address the principal objections to the use of the observational database, and the methods used to control or reduce the bias introduced when treatment is not allocated randomly. Finally, we discuss the complementary roles of the RCT and observational		The NEW ENGLAND JOURNAL of MEDICINE	The NEW ENGLAND JOURNAL of MEDICINE REVIEW ARTICLE
database and the potential benefit of more frequent use of multivariable methods to analyse RCT data. THE MODERN OBSERVATIONAL DATABASE A primary purpose of an observational database is to collect and then distil accumulated clinical experience to make accurate predictions for individual patients. To attain this goal, the factors which are most predictive of diagnosis and prognosis must first be identified, and then predictive models must be developed and validated. The primary purpose of the observational database therefore differs from that of the randomized controlled trial, which is designed to assess the effect		SOUNDING BOARD Real-World Evidence — What Is It and What Can It Tell Us? Rachel E. Sherman, M.D., M.P.H., Steven A. Anderson, Ph.D., M.P.P., Gerald J. Dal Pan, M.D., M.H.S., Gerry W. Gray, Ph.D., Thomas Gross, M.D., M.P.H., Nina L. Hunter, Ph.D., Lisa LaVange, Ph.D., Danica Marinac-Dabic, M.D., Ph.D., Peter W. Marks, M.D., Ph.J., Melissa A. Robb, B.S.N., M.S., Jeffrey Shuren, M.D., J.D.,	THE CHANGING FACE OF CLINICAL TRIALS Jeffrey M. Drazen, M.D., David P. Harrington, Ph.D., John J.V. McMurray, M.D., James H. Ware, Ph.D., and Janet Woodcock, M.D., <i>Editors</i> Pragmatic Trials
of therapy in a population of patients.		N Engl J Med. 2016 Dec 8;375(23):2293-2297	Ian Ford, Ph.D., and John Norrie, M.Sc. N Engl J Med. 2016; 375:454-63

European Committee - Innovative Medicines Initiative (IMI)

Trying to integrate CVOTs with RWE...

- Do we really need RWE?
- Can we rely on the results?
- Is RWE relevant to my clinical practice?

RCTs (vs placebo)

- High internal validity
- Limited external validity
- Efficacy and safety
- Gold standard

RWE (vs standard of care)

- Higher external validity
 (current clinical practice)
- Residual confounding
- Established for safety monitoring
- Effectiveness

The majority of patients are not represented in RCTs

How many real world patients with T2D would be eligible for landmark diabetes RCTs?

Eligibility for EMPA-REG OUTCOME

- Diabetes Collaborative Registry¹
 - In a large US-based outpatient registry, ~1 in 4 patients with T2D met the main eligibility criteria for EMPA-REG OUTCOME

- Royal College of General Practitioners Research and Surveillance Centre database²
 - 16% of patients with T2D from the UK-eMR database met the inclusion criteria for EMPA-REG OUTCOME

	RCGP-RSC total type II diabetes group (n = 60,327)				
	Risk factor present % (95% CI) ¹				
Myocardial infarction	4.9 (4.8 to 5.1)				
Coronary artery disease	5.9 (5.7 to 6.0)				
Unstable angina	0.9 (0.8 to 0.9)				
Stroke	4.3 (4.2 to 4.5)				
Peripheral artery disease	4.4 (4.3 to 4.6)				
Any major CV risk factor	15.7 (15.5 to 16.0)				

	Event rate (total)		Even (annua	t rate alized)	Potential events avoided		
	Rate in drug	Rate in placebo	Rate in drug	Rate in placebo	Total (3.1 y)	Per year	
All-cause death	5.7%	8.3%	1.94%	2.86%	1441	510	
CV death	3.7%	5.9%	1.24%	2.02%	1219	432	
CHF hospitalization	2.7%	4.1%	0.94%	1.45%	776	283	

Real-world Evidence and Ongoing CVOTs

CV, cardiovascular; CVOT, cardiovascular outcome trial; MI, myocardial infarction; SGLT2i, sodium–glucose co-transporter 2 inhibitor; T2DM, Type 2 diabetes mellitus 1. NCT01730534. Available at: https://clinicaltrials.gov/ct2/show/NCT01730534 (Accessed Oct 2018); 2. Zinman B, et al. N Engl J Med 2015;373:2117–2128; 3. NCT01032629. Available at: https://clinicaltrials.gov/ct2/show/NCT01989754 (Accessed Oct 2018); 4. NCT01986881. Available at: https://clinicaltrials.gov/ct2/show/NCT01032629; https://clinicaltrials.gov/ct2/show/NCT01986881. Available at: https://clinicaltrials.gov/ct2/show/NCT01989754 (Accessed Oct 2018); 4. NCT01986881. Available at: https://clinicaltrials.gov/ct2/show/NCT01989754 (Accessed Oct 2018); 5. https://clinicaltrials.gov/ct2/show/NCT01986881. Available at: https://clinicaltrials.gov/ct2/show/NCT01986881. Available at: https://clinicaltrials.gov/ct2/show/NCT01986881. Available at: https://clinicaltrials.gov/ct2/show/NCT02993614?term=cvd+real&rank=1 (Accessed Oct 2018). Kosiborod M et al. Circulation 2017;136:249–59; Kosiborod M et al. J Am Coll Cardiol 2018;71:2628–39.

CVOTs mostly in prevalent "established CVD" T2D population

ЕМРА- оυтсом	-REG				Sep 2	015	CANVAS Program	CANV/	NS-R Placebo		Jun 2017
	Patients with eve	ent / analyzed	Hazard				Outcome	(N=5795)	(N=4347)	Hazard Ratio	(95% CI)
	Empagliflozin	Placebo	ratio	95% CI		P value	no. (of participants p	er 1000 patient	-yr	
E	490/4687	282/2333	0.86	0.74, 0.99*	••	0.04	Death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke	26.9	31.5	₽-●-1	0.86 (0.75–0.97)
	172/4687	137/2333	0.62	0.49, 0.77		<0.001	Death from cardiovascular causes	11.6	12.8	⊢ ● 1	0.87 (0.72-1.06)
							Nonfatal myocardial infarction	9.7	11.6	I − ● ¦I	0.85 (0.69-1.05)
	213/4687	121/2333	0.87	0.70, 1.09	·••	0.22	Nonfatal stroke	7.1	8.4		0.90 (0.71-1.15)
ike	150/4687	60/2333	1 24	0.92 1.67		0.16	Fatal or nonfatal myocardial infarction	11.2	12.6		0.89 (0.73-1.09)
	100/1007	00/2000		0.02, 1.07		0.10	Fatal or nonfatal stroke	7.9	9.6		0.87 (0.69-1.09)
on for heart	126/4687	95/2333	0.65	0.50, 0.85	⊢ ●	0.002	Hospitalization for any cause	118.7	131.1	Hei	0.94 (0.88-1.00)
				-			Hospitalization for heart failure	5.5	8.7		0.67 (0.52-0.87)
				0.3	3 0.5 1.0 2	2.0	Death from cardiovascular causes or hospitalization for heart failure	16.3	20.8		0.78 (0.67-0.91)
							Death from any cause	17.3	19.5	⊢ ●–•]	0.87 (0.74-1.01)
				AV.	MBED		Progression of albuminuria	89.4	128.7	H#H	0.73 (0.67-0.79)
NN WHAT DID THAT STUDY		NEE	DED TO		40% reduction in eGFR, renal-replacement therapy, or renal death	ent 5.5	9.0 -	- - -1	0.60 (0.47-0.77)		
NIN	ш	FI	IND?		AF GOD:				C	.5 1.0	2.0
ININ NN	ITBC				. Ja				c	Canagliflozin Better Placebo E	Better

Primary outcome was defined as death from CV causes, nonfatal myocardial infarction, or nonfatal stroke

CI, confidence interval; CV, cardiovascular; EMPA-REG, Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes; HF, heart failure; MACE, major adverse cardiovascular event; MI, myocardial infarction; SGLT2, sodium–glucose co-transporter 2; T2DM, Type 2 diabetes mellitus

1. Zinman B, et al. N Engl J Med 2015;373:2117–2128.

2. Neal B, et al. N Engl J Med 2017;376:644-57.

Outcome 3-point MAC

CV death

Nonfatal MI

Nonfatal str Hospitalizat failure

Baseline characteristics from CVOTs and RWE studies (1)

		CVOTs		Observational studies				
	EMPA-REG OUTCOME ¹ (EMPA vs placebo) ¹ N = 7020	CANVAS (CANA vs placebo) ² N = 10 142	DECLARE Total (DAPA vs placebo) N = 17 160	CVD-REAL (SGLT-2i vs oGLD) ³ N = 306 156	CVD-REAL Nordic (SGLT-2i vs oGLD) ⁴ N = 91 320	CVD-REAL Nordic vs DPP-4i (DAPA vs DPP-4i) ⁵ N = 40 908	CVD-REAL 2 (SGLT-2i vs oGLD) ⁷ N = 470 128	EASEL (SGLT-2i vs oGLD) ⁶ N = 25 258
	63	63	64	57	61	61	57	66
Women, %	28	36	37	44	40	41	45	44
White race, %	72	78	79	-	-	-	NA	35
eCVD, %	> 99	66	41	13	25	23	27	100
Previous HF, %	10	14	10	3	5	5	7	23

These studies differ in design, patient population, comparator and follow-up period; the table does not represent a direct H2H comparison between studies CKD, chronic kidney disease; CVD, cardiovascular disease; CVD-REAL CardioVascular events in Diabetes – Reduction of Events According to real Life data; CVOT, cardiovascular outcomes trial; DAPA, dapagliflozin; DPP-4i, dipeptidylpeptidase-4 inhibitor; EMPA, empagliflozin; eCVD, estimated CVD; GLP-1 glucagon-like peptide-1; H2H, head-to-head; HF, heart failure; oGLD, other glucose-lowering drug; RWE, real world evidence; SGLT-2i, sodium–glucose co-transporter 2 inhibitor 1. Zinman B *et al. N Engl J Med* 2015;373:2117–28; 2. Neal B *et al. N Engl J Med* 2017;376:644–57; 3. Kosiborod M *et al. Circulation* 2017;136:249–59; 4. Birkeland KI *et al. Lancet Diabetes Endocrinol* 2017;5:709–17; 5. Persson F *et al. Diabetes Obes Metab* 2018;20:344–51; 6. Udell JA *et al. Circulation* 2018;137:1450–59; Nov 13 [Epub ahead of print];

7. Kosiborod M et al. J Am Coll Cardiol 2018;71:2628–39.

Baseline characteristics from CVOTs and RWE studies (2) DREAL

	CVOTs			Observational studies				
	EMPA-REG OUTCOME (EMPA vs placebo) ¹ N = 7020	CANVAS (CANA vs placebo) ² N = 10 142	DECLARE Total (DAPA vs placebo) N = 17 160	CVD-REAL (SGLT-2i vs oGLD) ³ N = 306 156	CVD-REAL Nordic (SGLT-2i vs oGLD) ⁴ N = 91 320	CVD-REAL Nordic vs DPP-4i (DAPA vs DPP-4i) ⁵ N = 40 908	CVD-REAL 2 (SGLT-2i vs oGLD) ⁷ N = 470 128	EASEL (SGLT-2i vs oGLD) ⁶ N = 25 258
Metformin, %	74	77	79	79	77	84	75	81
Insulin, %	49	50	40	29	30	29	20	20
SU, %	43	43	41	39	27	26	52	45
DPP-4i, %	11	12	16	33	19	-	56	44
GLP-1 RA, %	3	4	4	19	15	8	3	14
AHTN, %	95	-	89	80	76	73	63	-
ARB/ACEi, %	81	80	77	72	67	64	56	74
Statin, %	77	75	71	68	68	63	65	82*

These studies differ in design, patient population, comparator and follow-up period, the table does not represent a direct H2H comparison between study results ACEi angiotensin-converting-enzyme inhibitor; AHTN, arterial hypertension; ARB, angiotensin receptor blocker; CANA, canagliflozin; CKD, chronic kidney disease; CVD, cardiovascular disease; CVD-REAL, CardioVascular events in Diabetes – Reduction of Events According to real Life data; CVOT, cardiovascular outcomes trial; DAPA, dapagliflozin; DPP-4i, dipeptidypeptidase-4 inhibitor; EMPA, empagliflozin; GLP-1 RA, glucagon-like peptide receptor agonist; H2H, head-to-head; oGLD, other glucose-lowering drug; RWE, real world evidence; SU, sulphonylurea 1. Zinman B *et al.* N Engl J Med 2015;373:2117–28; 2. Neal B *et al.* N Engl J Med 2017;376:644–57; 3. Kosiborod M *et al.* Circulation. 2017;136(3):249–59; 4. Birkeland KI *et al.* Lancet Diabetes Endocrinol. 2017; 5:709–17; 5. Persson F *et al.* Diabetes Obes Metab. 2018;20:344–51; 6. Udell JA *et al.* Circulation. 2018;137:1450–59; 7. Kosiborod M *et al.* J Am Coll Cardiol. 2018;71:2628–39

What we know today Side by side plot of the CVOTs and RWEs results

Hospitalization for Heart Failure

			P-value for	
Database	Ν	# of events	SGLT2i vs. oGLD: p=0.0	⁰¹ HR (95% CI)
Korea	336,644	5149	-	0.87 (0.82, 0.92)
Japan	67,780	565	HH -1	0.75 (0.63, 0.89)
Singapore	2726	67	·	0.62 (0.38, 1.02)
Israel	19,472	128	⊢− ∎−−1	0.53 (0.37, 0.75)
Canada	16,064	88	 •	0.36 (0.24, 0.56)
Total	442,686	5997	-	0.64 (0.50, 0.82)
Heterogeneity p-valu ITT, unadjusted a	ie: p<0.001 nalysis	Hazard Ratio:	Favor SGLT2i ←	Favor oGLD

All-Ca	use D	eath	P-value for SGLT2i vs. oGLD:	p<0.001
Database	Ν	# of events		HR (95% CI)
Korea	336,644	3445	-	0.72 (0.67, 0.77)
Japan	67,780	557	F-88-4	0.56 (0.47, 0.67)
Singapore	2726	36		0.75 (0.38, 1.47)
Israel	19,472	199	⊢ ∎→	0.41 (0.30, 0.55)
Canada	16,064	261		0.51 (0.41, 0.65)
Australia	27,442	718	H	0.32 (0.27, 0.38)
Total	470,128	5216	-	0.51 (0.37, 0.70)
Heterogeneity p-valu ITT, unadjusted a	e: p<0.001 nalysis	Hazard Ratio: 0	Favor SGLT2i +	→ Favor oGLD 2.00

These studies differ in design, patient population, comparator and follow-up period. The graph does not represent a direct H2H comparison between studies. *On-treatment population. ACD, all-cause death; HR, hazard ratio; HHF, hospitalization for heart failure

Zinman B, et al. N Engl J Med 2015;373(22):2117-28 2.

- 3. Neal B, et al. N Engl J Med 2017;376:644-57 4.
- Kosiborod M. et al. Circulation. 2017:136(3):249-59 Birkeland KI, et al. Lancet Diabetes Endocrinol. 2017; 5(9):709-717

Persson F, et al. Diabetes Obes Metab. 2017;1-8 6.

7. Udell JA, et al. Circulation. 2017; Nov 13 [Epub ahead of print]

25 Kosiborod M, et al., J Am Coll Cardiol (in press), DOI: 10.1016/ j.jacc.2018.03.009

Kaplan-Meier side by side plots from CVOTs and RWEs for all-cause death

Kaplan-Meier side by side plots from CVOTs and RWEs for HHF

27

Stroke? Role of RWE in hypothesis generation

Database	Ν	# of events		HR (95% CI)	
Korea	336,644	5972	-	0.82 (0.78, 0.86)	
Japan	67,780	272	►88 1	0.66 (0.52, 0.84)	
Singapore	2726	34	←■	0.34 (0.15, 0.75)	P-value for
Israel	19,472	116	FB4	0.66 (0.47, 0.94)	SGLT2i vs. oGLD: p<0.001
Canada	16,064	45		0.55 (0.32, 0.94)	
Total	442,686	6439		0.68 (0.55, 0.84)	
		Hazard Ratio:	Favor SGLT2i ← Fa 0.25 0.50 1.00 2.00	avor oGLD O	Heterogeneity p-value: p=0.029

Too Good To Be True?

EDITORIAL			
Reality and Truth Balancing the Hope and the Hype of	Real-World Evidence		
Article, see p 249	Anushka Patel, MD, PhD Laurent Billot, MRes	C	omment
	SGLT2 inhibitors in the real w	orld: too good to be true?	
	Despite recent therapeutic advances, type 2 diabete remains associated with a high incidence of prematur cardiovascular disease and reduced life expectancy Glucose lowering alone has not been shown to hav any short-term effects on cardiovascular disease. Unt recently, no individual glucose-lowering agent had been	 95% CI 0.69–0.87), cardiovascular mortality (0.53, 0.40–0.71), and all-cause mortality (0.51, 0.45–0.58), and led to a 30% reduction in hospital events for heart failure (0.70, 0.61–0.81). Non-fatal myocardial infarction and non-fatal stroke were not reduced by SGLT2 inhibitors. Notably, only 25% of participants in CVD-REAL Nordic 	Lancet Diabetes Endocrinol 2017 Published Online August 3, 2017 http://dx.doi.org/10.1016/ 52213-8587(17)30259-0 See Online/Articles http://dx.doi.org/10.1016/ 52213-8587(17)30258-9

Data source	Death	Heart failure hospitalization	Myocardial infarction	Stroke
RCT meta- analysis	0.79 (0.70–0.88)	0.67 (0.55–0.80)	0.84 (0.73–0.98)	1.03 (0.86–1.24)
Observational data	0.51 (0.37–0.70)	0.64 (0.50–0.82)	0.81 (0.74–0.88)	0.68 (0.55–0.84)

"Each of the observational studies and clinical trials are informative and valuable, and there are complementary but only trials tell the truth about treatment effects."

Values are hazard ratios (95% confidence interval) for each outcome, SGLT-2i vs placebo/alternative glucose-lowering therapy McMurray JJV. *J Am Coll Cardiol* 2018;71:2640–42

Can we really "trust" effect seen in observational studies?

...results of <u>well-designed observational studies</u> do not systematically overestimate the magnitude of the effects of treatment as compared with those in randomized, controlled trials on the same topic

Benson et al. NEJM 2000; 342:1878-1886. 2. Concato J et al. NEJM 2000; 342:1887-1892

However, in RCTs biases might still be there... ...hidden somewhere

- Subversion Bias (poor concealment)
- Technical Bias
- Attrition Bias
- Consent Bias
- Ascertainment Bias
- Dilution Bias
- Recruitment Bias
- Resentful demoralisation
- Delay Bias

. . .

- Chance Bias
- Hawthorne effect
- Analytical Bias

- Schulz JAMA 1995;274:1456. Hewitt et al. BMJ 2005. Brown et al. Stats in Medicine, 2005,24:3715. Kinley et al., BMJ 2002 325:1323
- Berger VW, Weinstein S (2004). Ensuring the Comparability of Comparison Groups: Is Randomization Enough? Controlled Clinical Trials 25, 515-524
- Schor, S. (1971). The University Group Diabetes Program: A Statistician Looks at the Mortality Results. JAMA 217, 12, 1671-1675.
- Altman, D. G. (1985). Comparability of Randomized Groups. The Statistician 34, 125-136.
- Marcus SM (2001). Sensitivity Analysis for Subverting Randomization in Controlled Trials. Statistics in Medicine 20, 545-555.
- Jordhoy, M. S., Fayers, P. M., Ahlner-Elmqvist, M., Kaasa, S. (2002). Lack of Concealment May Lead To Selection Bias in Cluster
- Randomized Trials of Palliative Care. Palliative Medicine 16, 43-49.
- Matts, J. P. and McHugh, R. B. (1983). Conditional Markov chain design for accrual clinical trials. Biometrical Journal 25, 563-577.
- Berger, VW, Christophi, CA (2003). "Randomization Technique, Allocation Concealment, Masking, and Susceptibility of Trials to
- Selection Bias", *JMASM* 2, 1, 80-86.
- Berger, VW (2004). "Selection Bias and Baseline Imbalances in Randomized Trials", Drug Information Journal 38, 1-2.
- Berger, VW (2005). Selection Bias and Covariate Imbalances in Randomized Clinical Trials, John Wiley & Sons, Chichester.
- Berger, VW (2005). "Quantifying the Magnitude of Baseline Covariate Imbalances Resulting from Selection Bias in Randomized Clinical Trials" (with discussion), Biometrical Journal 47, 2, 119-139.
- Berger, VW, Exner, DV (1999). "Detecting Selection Bias in Randomized Clinical Trials", Controlled Clinical Trials 20, 319-327.
- Berger, VW (2005). "The Reverse Propensity Score To Manage Baseline Imbalances in Randomized Trials", Statistics in Medicine 24
- Berger VW. Selection Bias and Covariate Imbalances in Randomized Clinical Trials 2005: Wiley, Chicester.
- Rosenberger WF, Lachin JM. Randomisation in clinical trials: Theory and practice. Wiley Interscience, 2002, John Wiley and Sons, NY

Where is the "true" effect?

Where to find the "true" effect of a treatment?

- The main point we wish to emphasize is that while both types of trials yield useful information, pragmatic trials do not provide a more accurate measure of the 'true' treatment effect, since the concept of a true effect is fundamentally illusory.
- While extrapolating the results of efficacy trials to the care of individual patients in the real world can be problematic, and requires careful physician judgment and decision-making, the same is unfortunately true for the results of effectiveness trials.

From "double blinded" RCT to the "real" clinical practice

RCTs... it should not be an unconditional "trust"...?

Be Evidence Based, however.... careful about being too much "blinded"...

The metaphor of the blind men ("scientists") and the elephant

Levels of evidence and grades of recommendation: in any case we need 'well-conducted' clinical trials and st Table 1–ADA evidence-grading system for "Standards of Medical Care in Diabetes"

Level of

Table 2 Level 1a 1b 1c	2. Oxford Centre levels of the evidence scheme ²⁴ Description Systematic review with homogeneitya of RCTs Individual RCT with narrow CI All or none ⁹	Clear evidence from well-co that are adequately pow • Evidence from a well-co • Evidence from a meta- analysis	onducted ered, ind onducted analysis	l, generalizable randomized controlled trials cluding d multicenter trial that incorporated quality ratings in the
2a 2b 2c 3a	Systematic review with homogeneity of cohort studies Individual cohort study low quality RCT (eg, < 80% follow-up) Outcome research; ecological studies Systematic review with homogeneity of case-control studies	B: Level 2 or 3 (provided studies are consistent; extrapolations from level 1 studies)		 adequately powered, including Evidence from a well-conducted trial at one or more institutions Evidence from a meta-analysis that incorporated quality ratings in the analysis
3b Individual case-control studies		Supportive evidence from well-conducted cohort studies		
4	Case series; poor quality cohort or case-control studies	 Evidence from a well- Evidence from a well- 	conducte conducte	ed prospective cohort study or registry ed meta-analysis of cohort studies
5	Expert opinion omitting explicit critical appraisal (includes opin- ion based upon physiology, bench research, or first principles	Supportive evidence from a well-conducted case-control study		
*Free of heterogeneity in direction and degree of results between individual studies *Met when all patients used to die before treatment became available, but now some survive. O		et when some patients used to die but now all survive		 Evidence from observational studies with high potential for bias (such as case series with comparison with historical controls) Evidence from case series or case reports Conflicting evidence with the weight of evidence supporting the recommendation
			<u>E</u>	Expert consensus or clinical experience

UNIVERSITY OF OXFORD

www.cebm.net

Levels of Evidence (March 2009)

SED MEDICINE

RCT + RWE + NMA = A More Comprehensive Base of Evidence

RSG rosiglitazone, CVOTs cardiovascular outcome trials, RWE real world evidence, RR risk ratio

A. Avogaro et al. Cardiovasc Diabetol (2016) 15:111

Totality of evidence requires studies that complement

Then "re-thinking" about the need for CVOTs in T2D?...

1.00

...However...

"...traditional concepts of hierarchies of evidence should be replaced by instead selecting evidence based on the research question"

"A need for regulators and health technology assessment (HTA) bodies to provide further clarity on the acceptability of RWE and provide guidance on where different types of RWE might be applied to assess safety, efficacy and effectiveness"

Next steps for using real world evidence

FORÚM

Summary report of a FORUM follow-up roundtable held on 24 January 2018

The Academy of Medical Sciences

WASHINGTON, D.C. • NOV 16 - 18, 2018

REGISTRATION OPEN!

REGISTER NOW

Use of Real-World Data to Improve the Prevention and Care of Diabetes-Related Outcomes November 16 – 18, 2018

Location Washington Hilton Hotel 1919 Connecticut Avenue, NW Washington, District of Columbia 20009

Academy of Medical Sciences. Next steps for using real world evidence, 2018. Available at: <u>https://acmedsci.ac.uk/more/news/next-steps-for-using-real-world-evidence</u> (Accessed June 2018)

https://professional.diabetes.org/meeting/clinical-and-research-symposia/2018-research-symposium

CVD-REAL: in the literature

	Review Diabetes	EDITORIAL	
DIABETES, OBESITY AND METABOLISM	The Cardiovascular Benefits Associated with the Use of Sodium-glucose Cotransporter 2 Inhibitors – Real-world Data	Reality and Truth Balancing the Hope and the Hype of Real-World Evidence	
A JOURNAL OF PHARMACOLOGY AND THERAPEUTICS	Baptist Gallwitz Medizinische Klinik /L. University of Tübingen, Tübingen, Germany	Page 1 of 3	
REVIEW ARTICLE	Sodium-glucose cotransporte outcomes: insights from the 0	er-2 inhibitors and cardiovascular CVD-REAL study	
Observational research on sodium glucose co-	Marwan Saad ^{1,2}	JACC = es, Little Rock, Arkansas, USA; 'Department of Cardiovascular	
transporter 2 inhibitors: a real breakthrough?	Journal of the American College of Cardiology Volume 71, Issue 22, 5 June 2018, Pages 2507-2510	Comme	
Emanuel Raschi 💌, Elisabetta Poluzzi, Gian Paolo Fadini, Giulio Marchesini, Fabrizio De Ponti	Special Focus Issue: Cardiovascular Health Promotion Original Investigation	SGLT2 inhibitors in the real world: too good to be true?	
First published: 13 July 2018 https://doi.org/10.1111/dom.13468	Editorial Comment Prevention of Heart Failure With SGLT-2 Inhibition Insights From CVD-REAL *	Despite recent therapeutic advances, type 2 diabetes remains associated with a high incidence of prematic cardiovascular disease and reduced life expectancy. Glucose lowering alone has not been shown to have any short-term effects on cardiovascular disease. Until nor-fatal stroke were not reduced by SG12 inhibitors recently, no individual glucose-lowering agent had been totably, only 25% of participants in CVD-REAL Nordis	
	ل Michael E. Farkouh MD, MSc ۹. ७, ৫ Ջ ⊠, Subodh Verma MD, PhD ۹. ۹		

"Large pharmaco-epidemiological research studies such CVD-REAL should be commended for advancing knowledge by pooling such a large amount of prescription data and providing data on a heterogeneous cohort of patients with T2DM. Overall, data from observational cohort studies are not only in agreement with those from RCTs, but also found a larger benefit as compared to CVOTs in a population with lower CV risk. Notwithstanding these impressive results and sophisticated statistical techniques, we cannot firmly conclude for a class effect yet, and uncertainty remains especially on safety issues

...the heterogeneity of cohorts stresses the importance of assessing patients for comparability before data pooling"

What Science Can Do... What RWE Can Do!

CVD-REAL: Impact on Treatment Guidelines

- CVD-REAL data incorporated in international guidelines
 - HF guidelines in Japan¹
 - Diabetes guidelines in Taiwan², Singapore³ and Denmark⁴
- Being included in various documents that are currently in development
 - -AHA
 - ACC
 - -ADA
 - Others

• Interest from major payers in US, EU, and Asia

ACC, American College of Cardiology; ADA, American Diabetes Association; AHA, American Heart Association; HF, heart failure

1. Guidelines for Diagnosis and Treatment of Acute and Chronic Heart Failure (JCS 2017/JHFS 2017) http://www.j-circ.or.jp/guideline/pdf/JCS2017 tsutsui h.pdf

^{2.} Chiang et al. Journal of the Chinese Medical Association 81 2018:189-222

^{3.} Appropriate care guide for Oral glucose-lowering agents in type 2 diabetes mellitus – an update – July 2017

^{4.} Farmakologisk behandling af type 2-diabetes 2018. <u>https://vejledninger.dsam.dk/media/files/4/guidelines-2018-final.pdf</u>

CVD-REAL: Future Directions

- Drilling down for answers
- Laboratory data
 - eGFR
- Imaging data
 - LVEF
- New countries being added (Finland, Taiwan, Spain, Portugal, ...)
- Potential ability to examine epidemiologic trends in the adoption of T2D therapies, use in clinical practice, and associated outcomes
 - Across geographic regions
 - Temporal trends
- Potential ability to monitor safety
 - Across classes and specific agents

Easy to Navigate the Real World Evidence Sea?

• Yes

- with specific expertise and caution... &... full understanding of what we are talking about...&

- ...keeping always a "fair and balanced" mindset and interpretation of the results!

THANKS!

THIS IS JUST THE BEGINNING