

AME News

nr. 22 - marzo 2022

Capo-Redattori: Barbara Pirali, Laura Rizza, Chiara Sabbadin & Benedetta Zampetti Redattori: Elena Castellano, Carmela Coccaro, Pina Lardo, Alessandro Prete, Soraya Puglisi, Valerio Renzelli

TRATTAMENTO CON GH NELL'INFANZIA E MORBILITÀ CARDIO-VASCOLARE

Vincenzo Toscano & Renato Cozzi Editor Vincenzo Di Donna & Cecilia Motta

INTRODUZIONE

Le interazioni fra ormone della crescita (GH), insulin-like growth factor (IGF)-1 e cuore sono complesse (1). Il GH riveste un ruolo importante nello sviluppo del cuore nella vita fetale e ha un ruolo nel mantenimento della struttura e della funzione del cuore nell'adulto, stimolandone la contrattilità. Gli effetti dell'asse GH-IGF-1 sul metabolismo di lipidi, carboidrati, proteine hanno inoltre un impatto sul sistema cardio-vascolare (CV).

È stato suggerito che, rispetto a controlli sani, i pazienti ipopituitarici possono avere un rischio maggiore di morte per malattie cardio-cerebro-vascolari e che il deficit di GH possa essere un fattore contribuente, oltre ad ipogonadismo, radioterapia, craniofaringioma (2).

D'altra parte, i dati dei pazienti acromegalici evidenziano morbilità CV e metabolica derivante da un eccesso di GH per un lungo periodo.

I dati su alterazioni CV e mortalità in pazienti pediatrici e adulti con deficit di GH (GHD) trattati per lungo tempo con GH ricombinante (rhGH) sono discordanti: da un lato sono riportati effetti negativi sui livelli di glucosio e insulina e un aumento della mortalità, dall'altro i miglioramenti della dislipidemia, la riduzione dell'adiposità centrale e l'aumento della massa magra dovrebbero determinare effetti opposti (3,4).

LO STUDIO

È stato recentemente pubblicato uno **studio di coorte retrospettivo** basato su registri nazionali svedesi (5), in cui sono stati analizzati gli eventi CV verificatisi in pazienti GHD trattati con GH prima dei 18 anni di età (1985-2010) (6); ad ogni caso sono stati accoppiati 15 controlli, abbinati per sesso, anno di nascita, regione geografica, estratti *random* dallo *Swedish Total Population Register*.

Sono stati inclusi 53444 individui (**3408 pazienti e 50036 controlli**), 67.7% M, di età media 9.3 anni per i pazienti (all'inizio del trattamento con rhGH) e 9.4 anni per i controlli; l'età media (± DS) alla fine dello studio era 25.1 ± 8.2 anni

Tra i pazienti, 1837 avevano GHD isolato, 672 erano "nati piccoli per età gestazionale" (*small for gestational age*, SGA) senza recupero della crescita entro i 4 anni, 899 avevano bassa statura idiopatica (*idiopathic short stature*, ISS).

Il tempo mediano di *follow-up* è stato **14.9 anni** (range 0-25).

Analizzando i registri, sono state ricavate le covariate di interesse (dati sulla nascita, caratteristiche socio-economiche dei genitori, educazione, altezza all'inizio dello studio) e le informazioni sugli esiti delle malattie CV (CVD). L'analisi statistica è stata effettuata tramite regressione multipla di Cox. Nell'analisi sono state inserite informazioni significative per la valutazione CV, quali dati alla nascita, dati socio-economici (sia per i pazienti che per i genitori), altezza dei pazienti e dei controlli all'inizio dello studio.

L'esito primario dello studio era il primo evento CV registrato dopo l'inizio del *follow-up* (inizio del trattamento con GH), l'esito secondario la comparsa di un evento CV severo (aneurisma, cardiopatia ischemica, cardiomiopatia, scompenso cardiaco ed eventi cerebro-vascolari, secondo i codici ICD-10).

Risultati

Sono stati registrati 1809 eventi CV, di cui 167 severi, con un tasso di incidenza grezzo di 25.6 eventi/10.000 anni-persona per i pazienti e 22.6 eventi/10.000 anni-persona per i controlli.

L'hazard ratio (HR) aggiustato per le covariate per tutti gli eventi CV era:

- più alto nei GHD rispetto ai controlli (HR 1.69, IC 95% 1.30-2.19),
- specie per le donne (HR 2.05, IC 95% 1.31-3.20) rispetto agli uomini (HR 1.55, IC 95% 1.12-2.13),
- in tutti i sottogruppi: SGA 1.97 (IC 95% 1.28-3.04), GHD isolato 1.66 (IC 95% 1.21-2.26), ISS 1.55 (IC 95% 1.01-2.37).

L'HR aggiustato per malattia CV severa era 2.27 (IC 95% 1.01-5.12).

ame news

Il maggior rischio di malattie CV era associato con più lunga durata del trattamento (HR 2.08, IC 95% 1.35-3.20) e dose cumulativa totale (HR 2.05, IC 95%CI 1.18-3.55) di rhGH.

Gli autori concludono che il trattamento con rhGH nel GHD nell'infanzia è associato ad aumento del rischio di eventi CV nella prima età adulta; tuttavia, gli eventi CV rilevati in questa analisi sono rari, sia nei pazienti che nei controlli, e **le evidenze per una causalità sono limitate**.

Punti di forza e limiti dello studio

Gli studi disponibili in letteratura sugli effetti CV della terapia con GH sono poco numerosi, hanno *follow-up* breve, alcuni presentano limitazioni metodologiche e sono focalizzati prevalentemente sulla mortalità per cause CV. In questo studio, nonostante siano stati eseguiti aggiustamenti per numerosi fattori interferenti e sia stata analizzata un'adeguata coorte di soggetti di controllo, l'associazione fra trattamento con GH ed eventi avversi CV non può essere interpretata come un rapporto causa-effetto. Infatti, non si possono escludere *bias* derivanti da altri fattori confondenti; inoltre, la potenza dell'analisi statistica è limitata dal basso numero di eventi e dall'età relativamente giovane della coorte per la ricerca di eventi che possono comparire in età più avanzata.

CONCLUSIONI

Il profilo di sicurezza del trattamento con rhGH in pazienti con GHD isolato è stato ritenuto favorevole in numerosi studi, prevalentemente di sorveglianza *post-marketing*, e limitati al periodo di trattamento, sia in questi pazienti che nei pazienti SGA e ISS nei quali il trattamento è stato approvato successivamente.

Alcuni studi riportano l'associazione del trattamento con GH con rischi CV a lungo termine; tuttavia, è ancora incerto l'esatto ruolo dell'esposizione al trattamento in età infantile-adolescenziale nei diversi gruppi di pazienti. In questo studio, il rischio assoluto di eventi CV è risultato basso; appaiono a maggior rischio le femmine e i pazienti SGA.

BIBLIOGRAFIA

- 1. Caicedo D, Diaz O, Devesa P, Devesa J. Growth hormone (GH) and cardiovascular system. Int J Mol Sci <u>2018</u>, <u>19: 290</u>.
- 2. Tomlinson JW, Holden N, Hills RK, et al. Association between premature mortality and hypopituitarism. Lancet 2001, 357: 425–31.
- 3. Sävendahl L, Cooke R, Tidblad A, et al. Long-term mortality after childhood growth hormone treatment: the SAGhE cohort study. Lancet Diabetes Endocrinol 2020, 8: 683-92.
- 4. Maison P, Griffin S, Nicoue-Beglah, et al. Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults: a metaanalysis of blinded, randomized, placebo-controlled trials. J Clin Endocrinol Metab 2004, 89: 2192-9.
- 5. Tidblad A, Bottai M, Kieler H, et al. Association of childhood growth hormone treatment with long-term cardiovascular morbidity. JAMA Pediatr <u>2021</u>, <u>175:</u> e205199.
- 6. Albertsson-Wikland K, Martensson A, Svendahl L, et al. Mortality is not increased in recombinant human growth hormone-treated patients when adjusting for birth characteristics. J Clin Endocrinol Metab <u>2016</u>, <u>101: 2149-59</u>.