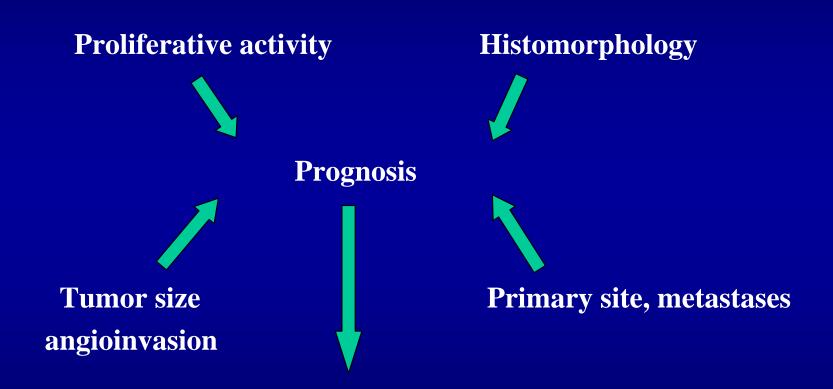


6th AME National Meeting 3rd Joint Meeting with AACE


NET: Treatment of Persistent Disease Prognostic Criteria Giuseppe Francia

Introduction

Although histological pattern as prognostic factor of neuroendocrine tumors (NETs) has been recently revalued, several other variables are to be considered to predict biological behaviour of such tumors, mainly of differentiated neoplasms

It is common experience that, even in patients with metastatic NETs clinical course is highly variable

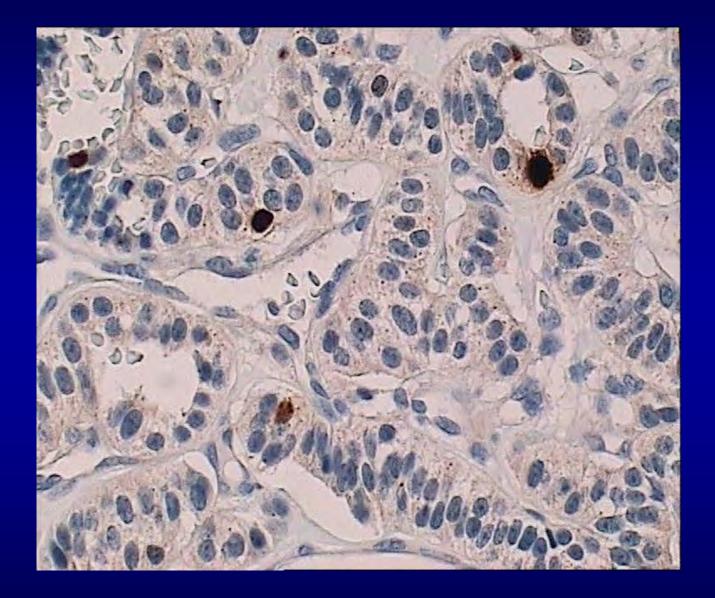
Main prognostic indicators

Therapeutic planning

• Prognostic criteria

• Functional status and prognosis

• MEN 1 and prognosis


• Analysis of prognostic variables

Histologic features

• Well differentiated NETs

- Trabecular or glandular structure
- Cell monomorphism
- Absent cytological atypia
- Reactivity for chromogranin A, specific hormones, NSE, synaptophysin
- No overexpression of p 53

- Poorly differentiated NET
- Irregular solid areas, necrosis
- Cellular atypia
- Reactivity for cytosolic markers (NSE, synaptophysin)
- Scant or weak reactivity for chromogranin A or specific hormones
- Overexpression of p 53

Well differentiated NET

Primary site

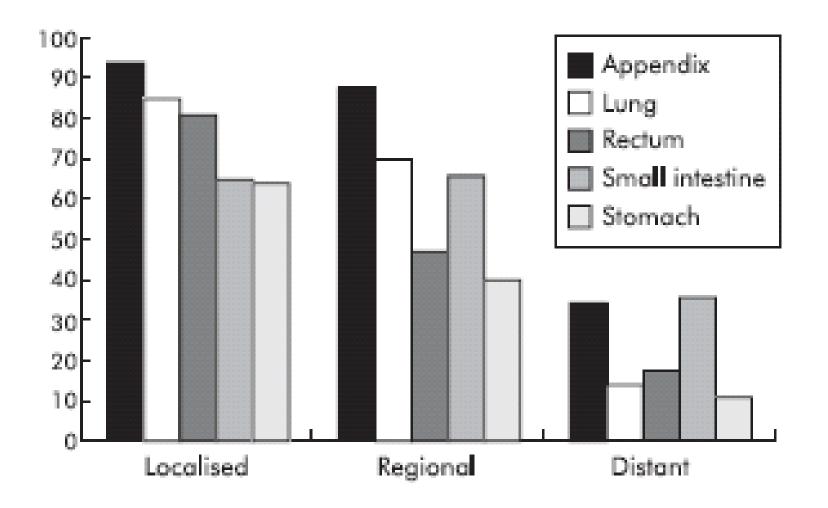


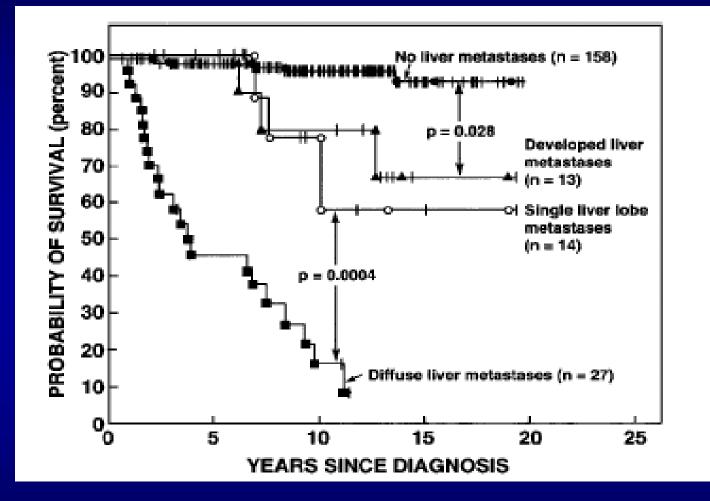
Figure 2 Five year survival of patients with carcinoid tumours related to the primary site and degree of spread.

Ramage et al, GUT, 2005

Major negative prognostic factors of gastroenteropancreatic endocrine tumors

Pancreatic site Tumor size > 3 cm Distant extrahepatic metastases Poor degree of cell differentiation

Panzuto et al Endocr Relat Cancer 2005


Metastases

Five year survival (%) of patients with carcinoid tumours related to primary site and presence of metastases (8305 cases)

Primary site	Localised	Nod. Met	Dist. Met.
Stomach	64,3	39,9	10,0
lleum	64,9	65,5	35,9
Colon	70,7	44,4	20,5
Appendix	94,0	44,4	33,7
Rectum	81,0	84,6	18,3
gallbladder	83,0	46,7	-
Lung	85	0	13,7
Ovary	95,0	70,1	13,3
All sites			
(media±SE)	79,7±4,3	50,6±9,9	21,8±3,0

Modlin, 1997

Gastrinoma

Patients without any liver metastases had a 95% 20-year survival from diagnosis, whereas patients with diffuse metastases had a 10-year survival of only 15%. Patients who had a single liver lobe metastasis or less than 5 discrete metastases in both liver lobes also had a decreased survival (60% at 15 years);

Norton and Jensen 2004

Tumor size

Tumor size in well differentiated GEP

	Site	size (cm)
	Benign behaviour	uncertain behaviour +
		angionvasion
Pancreas	≤ 2	> 2
Stomach	≤ 1	> 1
Duodenum	proximal/	
jejunum	≤ 1	> 1
ileum	≤ 1	> 1
Rectum col	on ≤ 2	> 2
Appendix	≤ 2	> 2

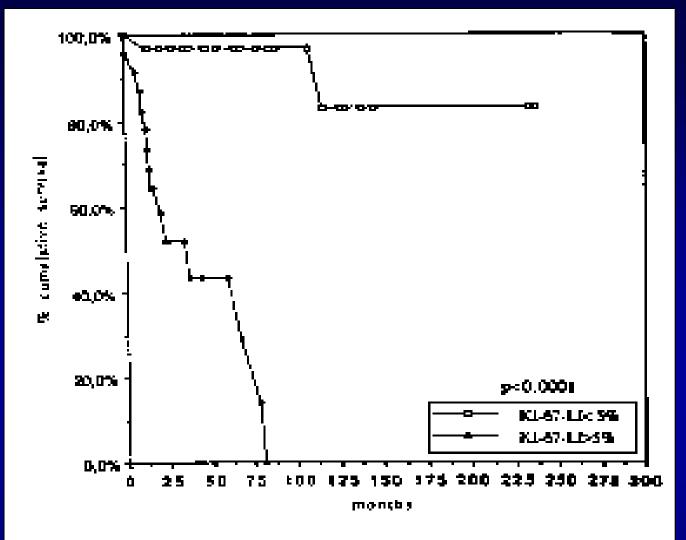
from Bordi et al. 2003

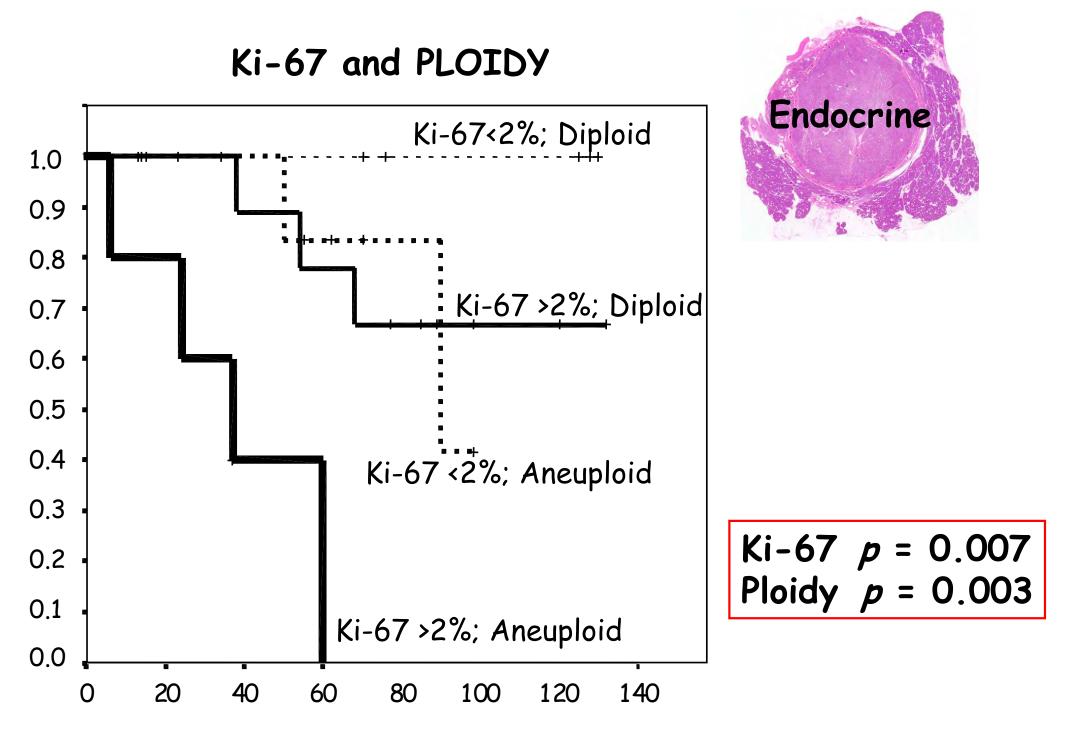
NET pancreas: primary tumor size and liver metastases frequency

Tumor size	liver metastases
< 1 cm	4%
1-3 cm	28%
> 3 cm	61%

Norton J. A. 1997

These data suggest that surgery treatment of non functioning neuroendocrine pancreatic neoplasms < 2 cm should be carefully weighed against the mortality and the morbidity related to pancreatic resection **Proliferative activity**

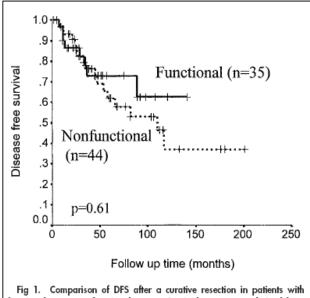


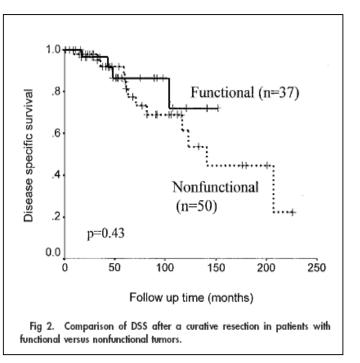

FIGURE 3. Actuarial survival of 54 PET according to Ki-67 index. Tumors showing Ki-67 index > 5% showed a decreased percentage of cumulative survival.

Ki 67 as Indipendenr Predictor for Malignancy Endocrine Tumors of the Pancreas: *Pelosi et al, 1996*

well differentiated NET poorly differentiated NET

Mitotic counts (n	mitoses/mm ² or 1	10 HPF) < 2	≥10
-------------------	------------------------------	--------------	------------


 Ki 67 index (% positive cells)
 < 2%</td>
 > 15%



Rigaud et al. Cancer Res 2001, 61:285

Does functional status of neuroendocrine pancreatic tumors affect the survival?

Data are conflicting: previous findings, showing longer survival of patients with functioning tumors, (*Broughan et al., 1986, Thompson et al. 1988*) were not confirmed (*White et al. 1994, Hochwald et al.2002*)

functional versus nonfunctional tumors. Survival curves were derived from patients for wham recurrence data are available.

Hochwald et al. 2002

MEN 1 and neuroendocrine tumors

Several studies show that pancreaticoduodenal neuroendocrine tumors in patients with MEN 1 have low growth rate with excellent survival (*Weber et al., 1995, Cadiot et al., 1999*).

However in more recent studies such tumors proved to be a major cause of premature death in MEN 1

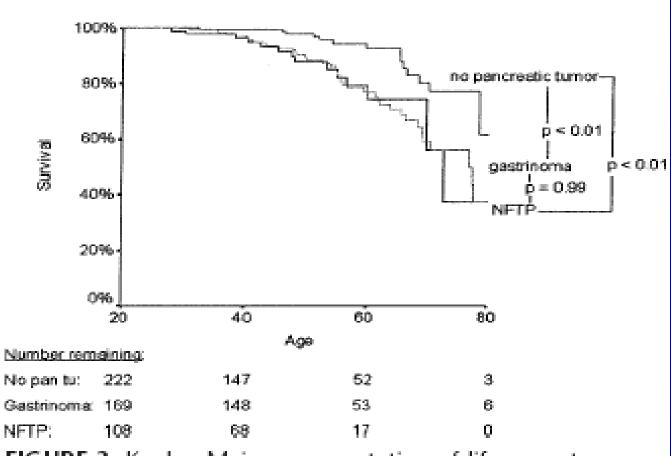
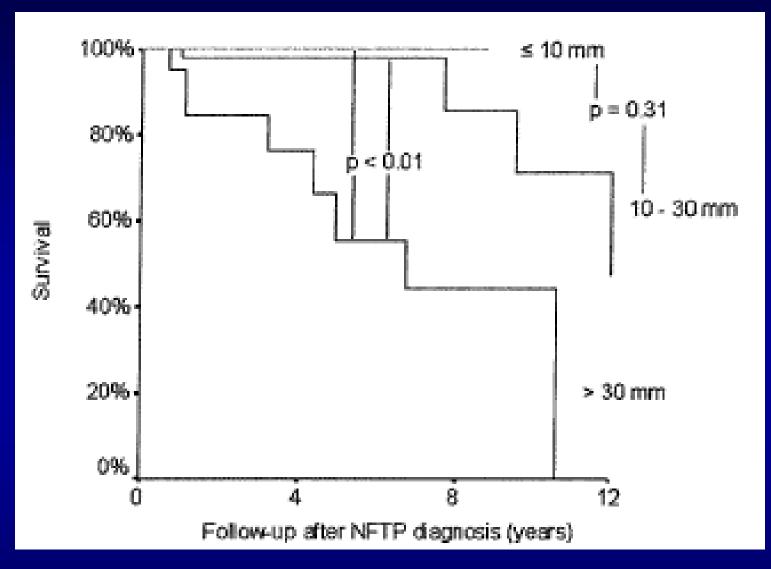



FIGURE 3. Kaplan-Meier representation of life expectancy according to the type of pancreaticoduodenal tumor. Data are expressed as age at the end of follow-up. The number of patients at risk at each time point is shown below the graph.

Triponez et al 2006

Survival of non functioning tumors of the pancreas according to the size in108 patients affected by MEN 1

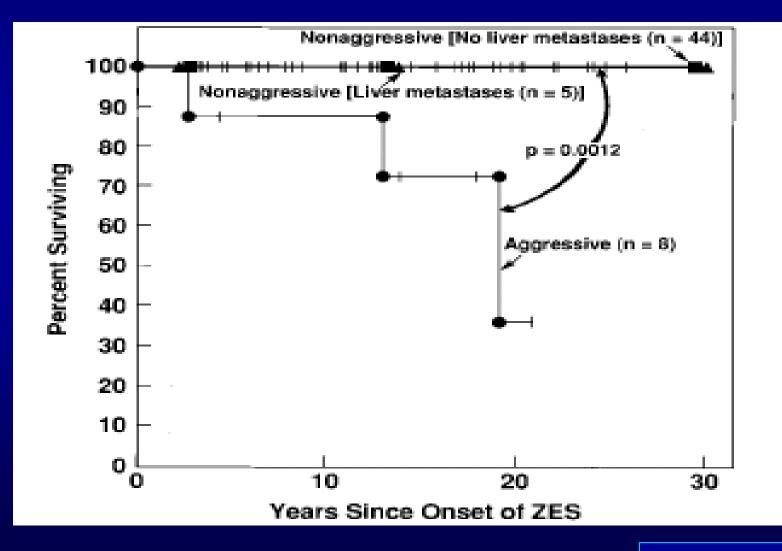
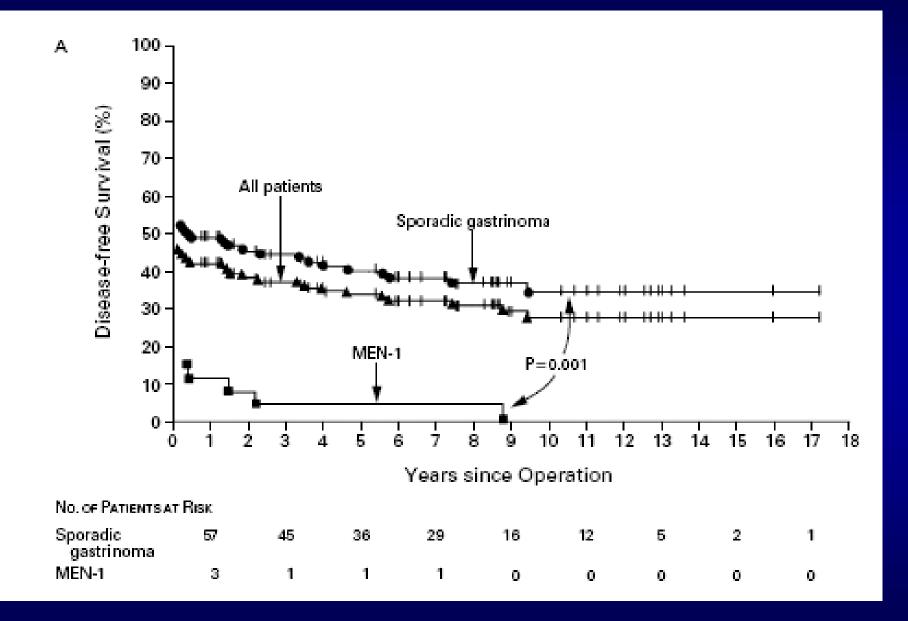

Triponez et al 2006

TABLE 4. Proportions of Patients Surviving 4 and 8 Years After NFTP Diagnosis

	4 Years (%)	8 Years (%)
No metastasis	98 (95-100)	98 (75-100)
Distant metastasis	73 (51–95)	34 (6-62)

Triponez et al 2006

Survival of patients with ZES and MEN 1 with or without aggressive disease

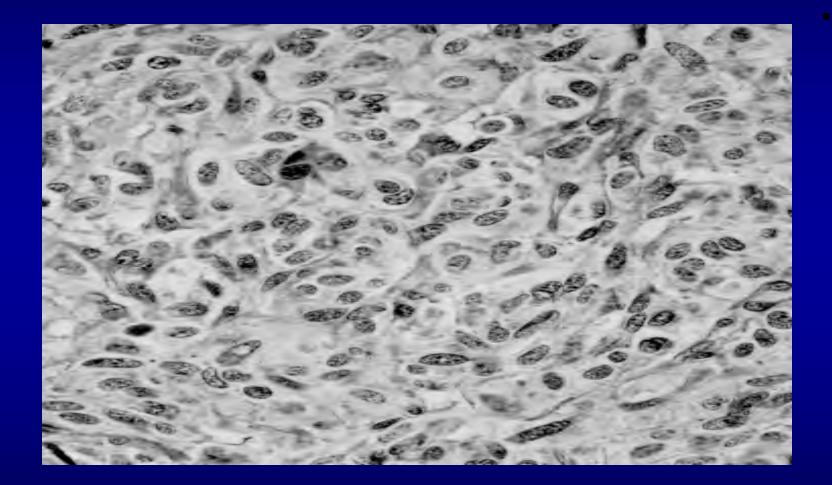

Gibril et al, 2001

The gastrinoma with "Talons"

	þ
T ≥ 3 cm	p < 0.0001
Liver metastases	p < 0.0001
Gastrin levels>10.000 pg/ml	p < 0.0001
Bone metastases	p < 0.001
Gastric carcinoid ECLoma	P < 0.02
LOH 11q13	P = 0.0004

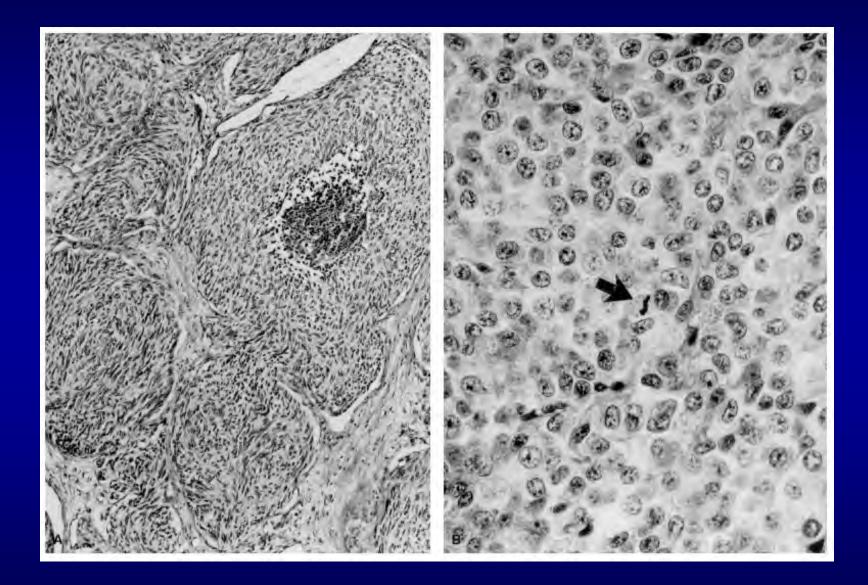
*SOLO IN MEN 1

Norton JA et al. 1999


What prognostic factor has the major impact on the survival?

	All neuroendocrine tumors (p)	Carcinoids (p)
Univariate analysis		
Variable		
Stage	< 0.001	0.003
Mitoses	< 0.001	< 0.001
Necrosis	< 0.001	< 0.001
Vascular invasion	< 0.001	0.002
Nucleoli	0.021	0.003
Pleomorphism	NS	0.001
Multivariate analysis	and a second	1000
Variable		
Mitoses (average per		
2 mm ² [10 HPF])	0.05	< 0.001
Necrosis	0.002	NS
Vascular Invasion	0.04	NS
Nucleoli	NS	NS
Variable		
Mitoses (2-10 per		
2 mm ² [10 HPF])*	< 0.001	NA
All other variables	NS	NA

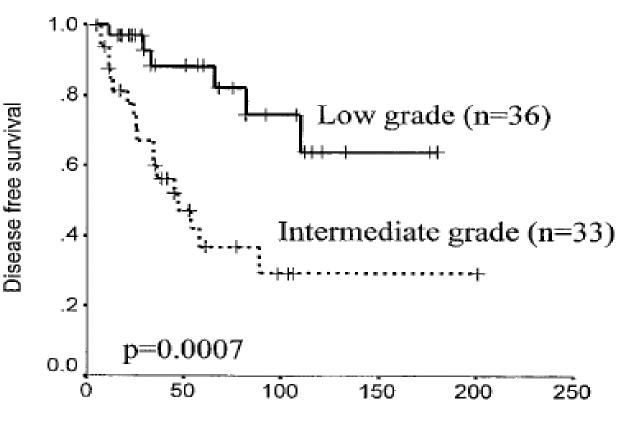
HPF, high-power fields; NA, Not applicable; NS, Not significant.


* Mitoses bracketed as 0 < 2, 2 < 10, and equal to or greater than 10 mitoses per 2 mm² (10 HPF).

Survival analysis of neuroendocrine lung tumors (200 cases) *Travis et al 1998*

Typical carcinoid tumor

Travis et al 1998


Atypical carcinoid tumor

Travis et al 1998

(nonfunctional and functional) Undergoing a Curative Resection					
	Univariate P		Multivariate P		
	DFS	DSS	DFS	DSS	
Presence of tumor necrosis	.002	.16	.01		
Presence of lymph node or liver metastases	.0002	.07	.04	.22	
Presence of soft-tissue invasion	.01	.36	.65		
Presence of vascular invasion	.02	.04	.56	.55	
Nuclear grade 3 or 4 v 1 or 2	.04	.33	.98		
Tumor mitotic rate of > 2 v ≤ 2 per 50	.001	.002	.16	.02	
HPFs					
Size > 2 cm v ≤ 2 cm	.01	.05	.58	.80	
MIB-1 value of $> 50 v \le 50$ per 10 HPFs	.001	.05	.67	.66	
Progesterone receptor-positive v -negative	.79	.28			
013-positive v -negative	.51	.65			

Table 8. Analysis of Factors Impacting DFS and DSS for 87 Patients (nonfunctional and functional) Undergoing a Curative Resection

Hochwald et al, 2002

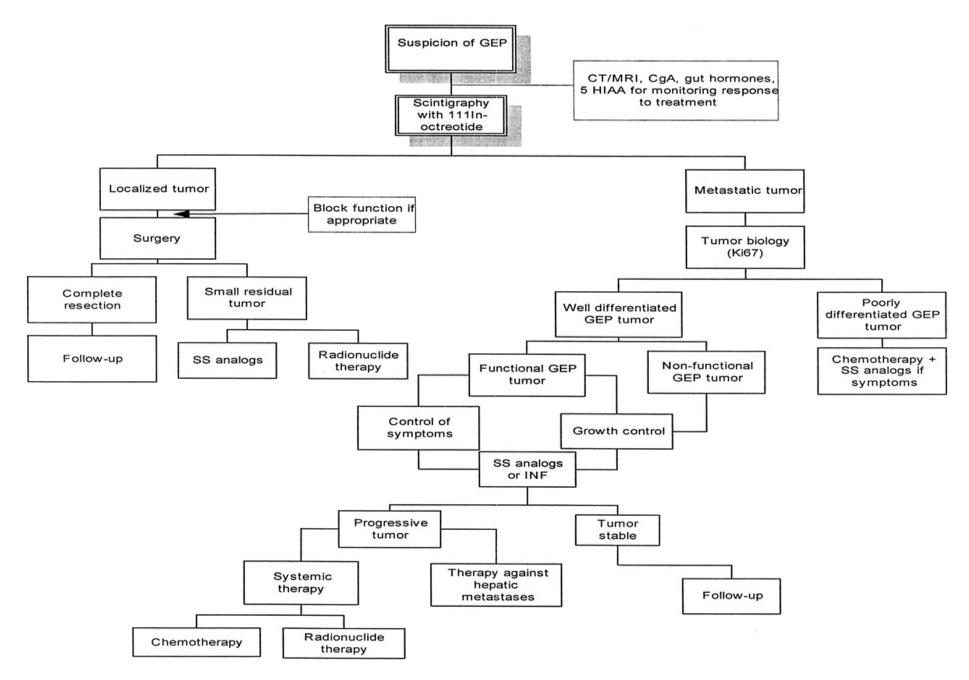
Follow up time (months)

Fig 3. DFS in patients grouped according to new classification system (low grade: no necrosis and < 2 mitoses per 50 HPFs; intermediate grade: necrosis or \geq 2 mitosis per 50 HPFs). Survival curves were based on cases for which recurrence and pathologic information was available.

Hochwald et al, 2002

Multivariate analysis of prognostic factors in 180 sporadic non functioning neuroendocrine pancreatic tumors Clinica Chirurgica, Università di Verona, 2006

- Pain
- Weight loss
- Size
- Ki67
- Stage
- N0M0
- N1MO
- NanyM1
- Histologic pattern
 - well-differentiated
 - poor-differentiated


ersità di Verona, 20 0.167 0.001 0.085 0.00001

What are the major prognostic factors shared by the different types of neuroendocrine tumors ?

- Ki 67 or mitotic index
- Size and/or distant metastases
- Histologic findings (degree of differentiation, necrosis)

In the flow-pan of Kaltsas et al (2004) for the assessment of therapeutic strategy determination of Ki 67 plays a pivotal role

DOI 10.1007/s00428-006-0250-1

ORIGINAL ARTICLE

TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system

G. Rindi • G. Klöppel • H. Alhman • M. Caplin • A. Couvelard • W. W. de Herder • B. Erikssson • A. Falchetti • M. Falconi • P. Komminoth • M. Körner • J. M. Lopes • A-M. McNicol • O. Nilsson • A. Perren • A. Scarpa • J-Y. Scoazec • B. Wiedenmann • and all other Frascati Consensus Conference participants

Received: 11 April 2006 / Accepted: 6 June 2006 / Published online: 12 September 2006 © Springer-Verlag 2006

Update in Clinical Endocrinology

NET: Treatment of Persistent Disease

Surgical therapy

massimo.falconi@univr.it

Verona, October 28, 2006

A series of question marks ✓ Does it exist? \checkmark To which extent? 1. Simple palliation 2. Debulking resection Does it change according to \checkmark the site of disease? Does it change according to other parameters?

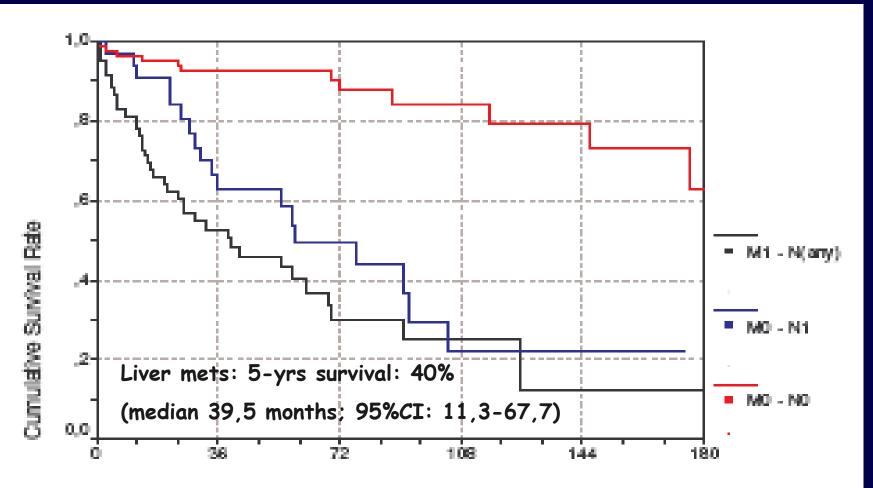
A series of question marks

✓ Does it exist?

The surgeon and NETs

The surgeon and advanced NETs

A change of perspectives


- To reduce symptoms:
- 1. hormonal hypersecretion
- 2. obstructive
- To increase and/or make possible other therapies
- To prolong survival

To which extent? Simple palliation?

- To reduce symptoms:
- hormonal hypersecretion
 Nowadays medical therapy is better!
- 2. Obstructive

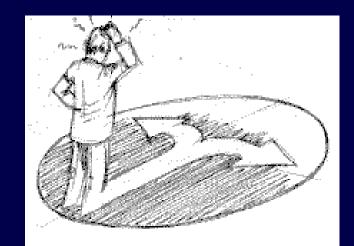
Surgical by passes on G.I. and biliary tree still represent the best option due to the usually long life expectancy of NET patients

A truth even for advanced!

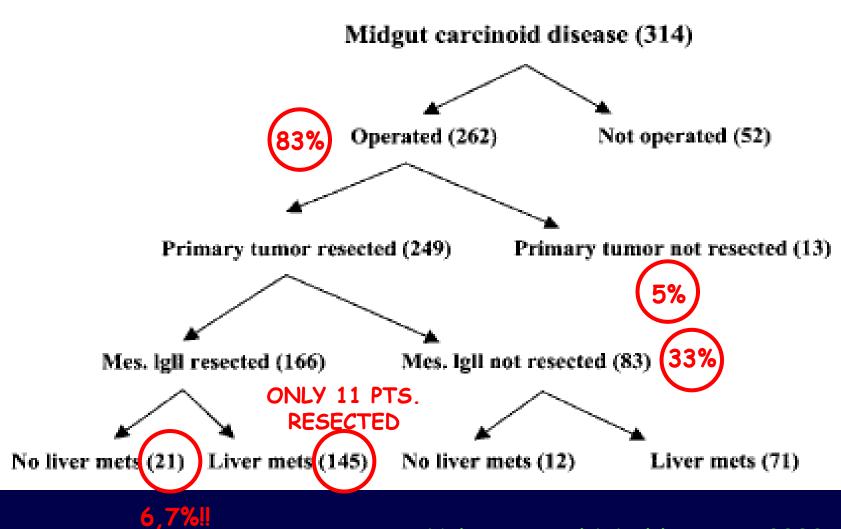
follow up (months)

A surgical dream: to be a plummer!

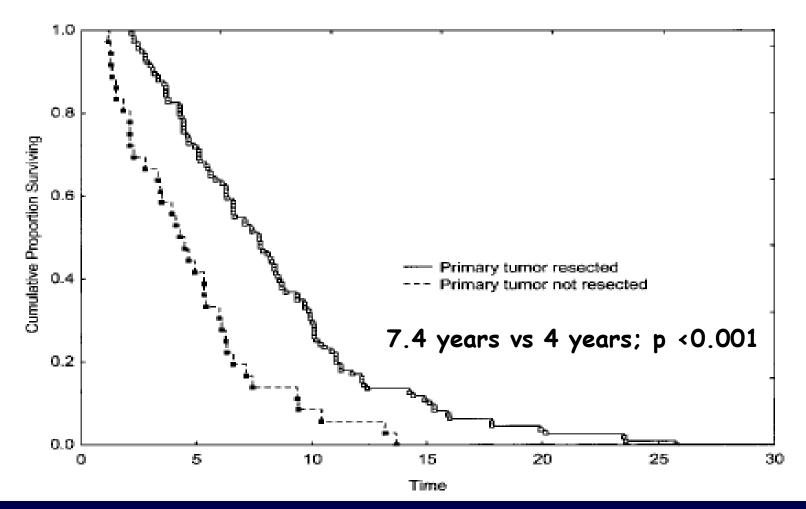
To which extent? Debulking?



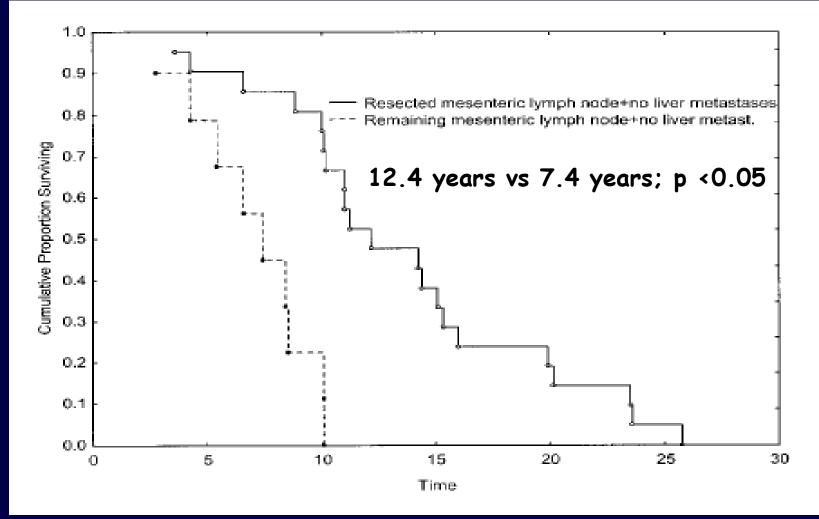
Primum non nocere!

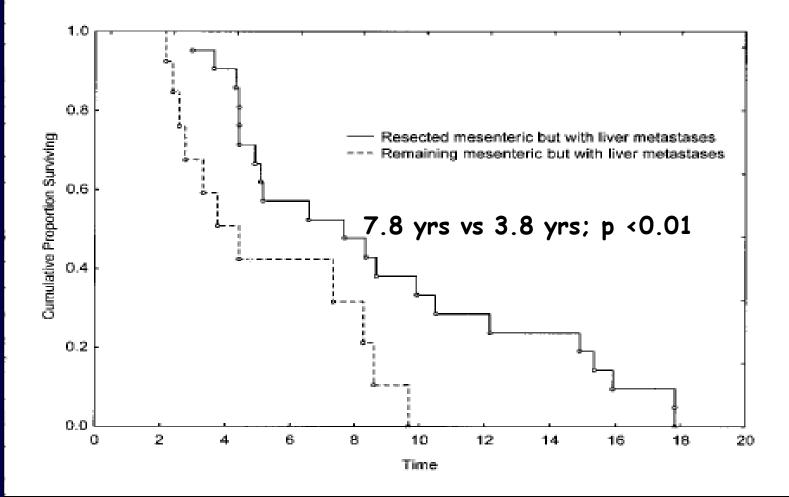

A scholastic division

Carcinoids of "midgut"

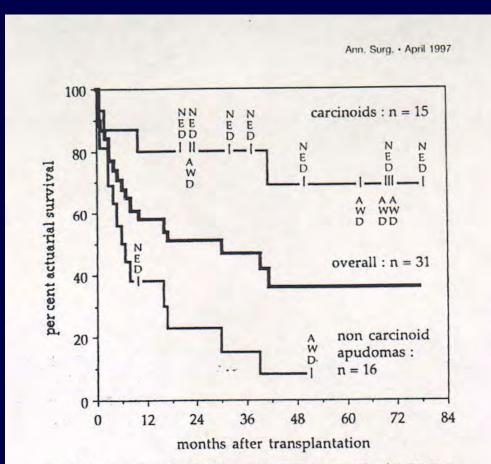


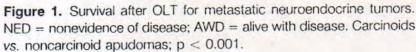
Pancreatic carcinomas


"Midgut real life"


Survival (I) To resect the primary?

Survival (II) To resect also the nodes?


Survival (III) To resect the nodes in any case?

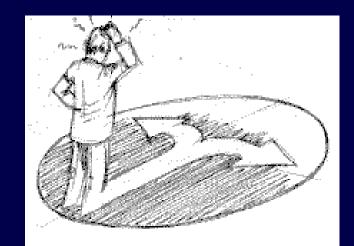


Symptoms relief

✓↓ diarrhea episodes
✓↓ watery stools
✓↓ pain episodes
✓ = flush attacks

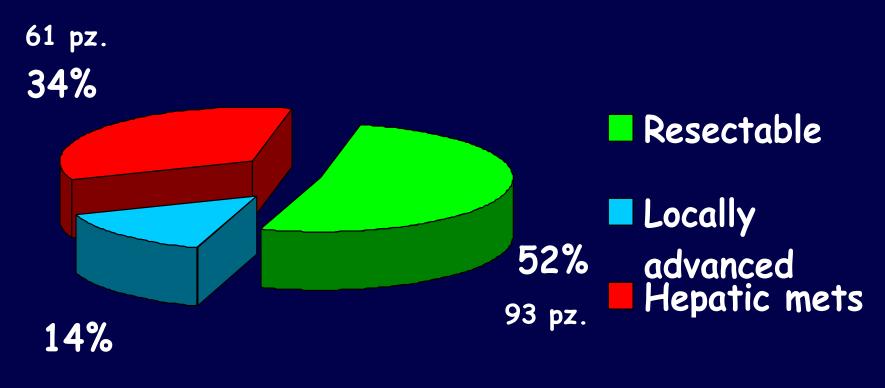
Whenever we do a good job on "the primary".....AFTER 1 yr: OLT

Palliative surgery on advanced carcinoids of midgut


- We prolong the survival
- ✓ We reduce symptoms:
- 1. Mechanical
- We do not reduce symptoms:
- 1. Hormonal hypersecretion
- We make possible other therapies

A series of question marks

✓ Does it change according to the site of disease?


A scholastic division

Carcinoids of "midgut"

Pancreatic carcinomas

Nonfunctioning pancreatic endocrine tumor 1985-2004 n= 180 pts.

26 pz.

Published data on survival according to surgical treatment

		Resected primary But no metastases		Radically resected primary and debulking on mets		Radically resected primary and all metastases				
Author	Туре	n	5-yr (%)	Median (yr)	n	5-yr (%)	Median (yr)	n	5-yr (%)	Median (yr)
Evans 1993	ICT (NF)	12	41	4.5			p ns			
Chamberlain 2000	ICT (NF+F) + GI				19	63	5.5	15	85	nv
Solorzano 2001	ICT (NF)	16	49	3.0°				4	nv*	nv*
Touzios. 2005	ICT (NF+F) + GI	23	25	1.6	19 18	72 50	>8 4.1			
House 2006	ICT (NF+F)	5	20	1.4°		p 0.06		31	65	6.5°

Aim

To evaluate if complete resection of primary tumor gives any advantage in term of survival in patients suffering from NF-PECs with liver metastases.

Patients and methods From 1990 to 2004 all patients suffering from unresectable hepatic metastases were divided in 2 group: Group 1 Group 2 Patients with resectable Patients with unresectable primary tumor primary tumor

Primary tumor resection

No surgery or palliative derivative if necessary

Results: population

	Total (n: 51)	Group 1 (n: 19)	Group 2 (n: 32)	p value
Age (y) median (IQR)	55 (47 - 66)	51 (41 - 65)	57 (50.3 - 66)	ns
Gender (M/F)	24/27	10/9	14/18	ns
Site of the primary				
Head (%)	19 (37.3)	5 (26.3)	14 (43.8)	
Body-Tail (%)	32 (62.7)	14 (73.7)	18 (56.3)	ns
Tumour size (mm) median (IQR)	45 (30 - 75)	35 (20 - 60)	54.5 (31.3 - 80)	ns (0.06)
Tumour differentiation				
CWD (%)	46(90.2)	16 (84.2)	30 (93.8)	ns
PDC (%)	5 (9.8)	3 (15.8)	2 (6.3)	
Liver involvement (%)				
<25 (%)	9 (17.6)	5 (26.3)	4 (12.5)	ns
25-50 (%)	34 (66.7)	13 (68.4)	21 (65.6)	
>50 (%)	8 (15.7)	1 (5.3)	7 (21.9)	

Results: procedures

Group 1 (n = 19)

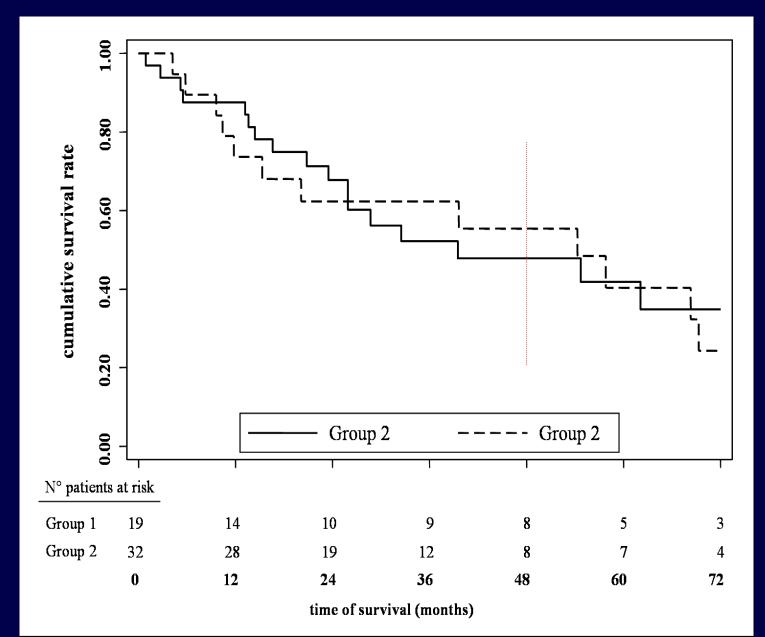
Group 2 (n = 32)

14 Distal pancreatectomy5 Pancreticoduodenectomy

15 No surgery
9 Biliary and/or digestive derivative
8 Explorative laparotomy

Mortality 0% Morbidity 47.1%

Antitumoral treatments


	Total (n: 51)	Group 1 (n: 19)	Group 2 (n: 32)	p value
First line (%)	48 (94.1)	18 (94.7)	30 (93.8)	
Somatostin analogues		6 (33.3)	25 (83.3)	
Somatostatin anologues+TACE		11 (61.1)	0 (0.0)	0.0001
Chemotherapy		2 (11.1)	5 (16.7)	
Second line (%)	27 (52.9)	10 (52.6)	17 (53.1)	
Chemotherapy		5 (50.0)	9 (52.9)	
Radiometabolic therapy		2 (20.0)	7 (41.2)	ns
TACE		3 (30.0)	1 (5.9)	
Third line (%)	5 (9.8)	4 (21.1)	1 (3.1)	
Chemotherapy		3 (75.0)	1 (100.0)	
Radiometabolic theraphy		1 (25.0)	0 (0.0)	ns

Follow up

	Group 1 (n=19)* n (%)	Group 2 (n=32) n (%)
Median survival	54.3	39.5
(months) <i>p 0.741</i>	(95% CI : 25-83.6)	(95%CI 5.4-73.6)
Dead <i>p 0.389</i>	13 (68.4%)	18 (56.2%)

*No local recurrence

Survival curve

Published data on survival according to surgical treatment

		Resected primary But no metastases				No resection both of primary and mets		
Author	Туре	n	5-yr (%)	Median (yr)		n	5-yr (%)	Median (yr)
Evans 1993	ICT (NF)	12	41	4.5	P n.s	22	38	3.3
Solarzano 2001	ICT (NF)	16	49	3.0	р 0.06	80	16	1.8
Present series 2006	ICT (NF)	19	40.4	4.5	р 0.07	32	41.9	3.3

A series of question marks

 Does it change according to other parameters?

Significant predictors of survival

Variables in the equation		Hazard Ratio (95% CI)	p value
Tumour	CWD (%)	1	
differentiation	PDC (%)	3.01 (1.08 - 8.4)	0.035
	< 10%	1	
Ki67% at diagnosis	\geq 10%	4.4 (1.2 - 16.1)	0.023

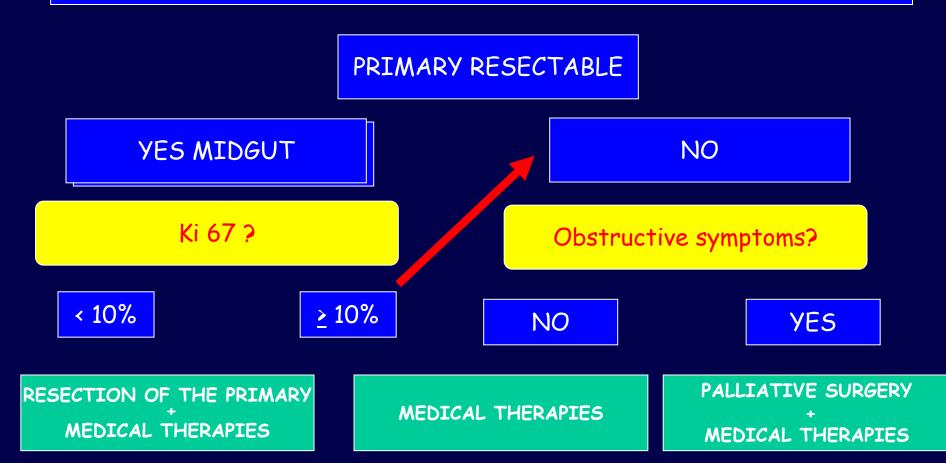
Significant predictors of survival estimated with Cox's proportional hazards model in 51 patients suffering from non-functioning metastatic pancreatic endocrine carcinoma.

Flow-chart for advanced NET tumors

DIAGNOSIS OF ADVANCED NET TUMOR

DEGREE OF DIFFERENTIATION?

POOR DIFFERENTIATED


WELL DIFFERENTIATED

CHEMOTHERAPY (Cisplatin + etoposide)

PRIMARY RESECTABLE?

Flow-chart for advanced NET tumors

Thank you, very much, indeed!

Medical treatment of functioning tumors

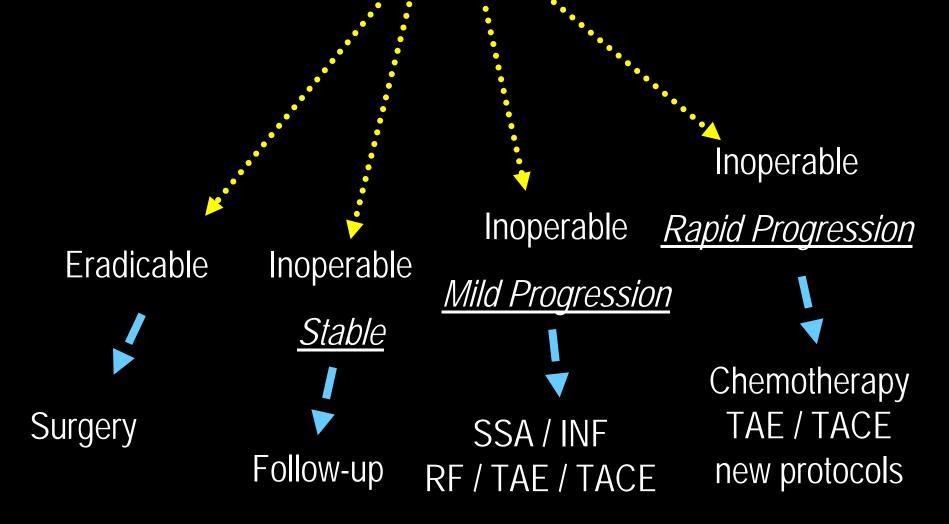
Department of Molecular and Clinical Endocrinology & Oncology, "Federico II" University, Napoli

Treatment modalities in Neuroendocrine Tumors

Loco-regional treatments

Surgery

Chemotherapy



Somatostatin analogues

Interferon

Tumor-targeted radioactive treatments

Well Differentiated Neuroendocrine Tumors

Tumor-targeted radioactive treatments

Octreotide sc vs. Octreotide-LAR

Symptomatic response

79 NET pts with carcinoid syndrome

OCT 0.3-0.9 mg OCT LAR 10 mg 20 mg 30 mg

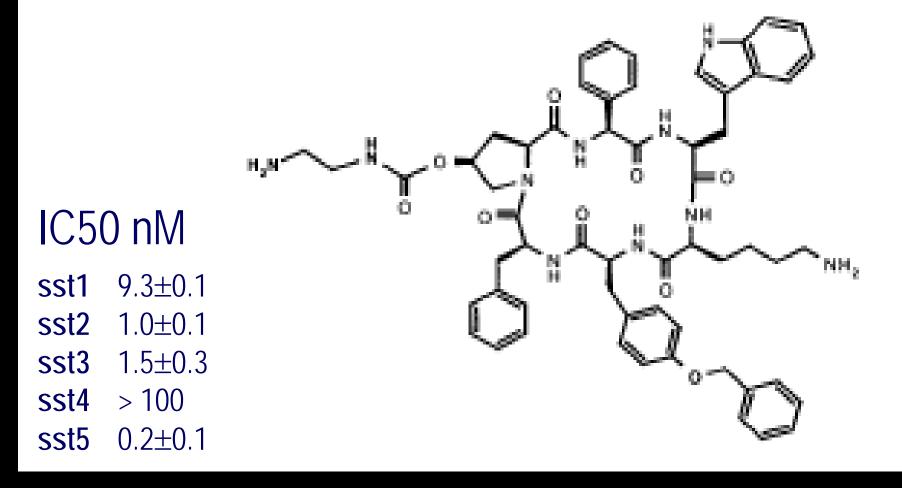
58.3% 66.7% 71.4% 61.9%

Rubin J, et al. J Clin Oncol 1999

Lanreotide Autog	e		
		Sym	ptomatic
as Cares Cares Cares Care		res	sponse
71 NET pts with carcinoid			
syndrome	Ba	aseline	Post-TTT
LAN ATG:60-120 mg/m	Diarrhoea	5.0	3.9
duration: 24 weeks	Flushing	3.0	1.7

Rubszniewski P, et al. Neuroendocrinology 2004

Potential mechanisms of tachyphylaxis and resistance to SSA therapy in patients with SST-positive Neuroendocrine Tumors



- Down-regulation of SS receptors
- Desensitization: receptor uncoupling from second messenger activation
- Nonhomogeneous expression of SST subtypes in tumors
 - Absence of SST subtypes with high affinity for octapeptide SSAs
- Tachyphylaxis of the inhibitory effects of SSAs on indirect tumor growth-promoting mechanisms (i.e., GH or gastrin secretion)
- Mutations in sst genes leading to absence of functional receptor proteins

Schmid HA, Schoeffter P: Functional Activity of the Multiligand Analog SOM230 at Human

Recombinant Somatostatin Receptor Subtypes Supports Its Usefulness in Neuroendocrine Tumors.

Neuroendocrinology 2004;80(Suppl.1):47-50

SOM230 (450-1200 mg bid) - 1st experience in NET (Phase II open-label multicenter study)

Early data on the efficacy and safety of the novel multi-ligand somatostatin analog, SOM230, in patients with metastatic carcinoid tumors refractory or resistant to octreotide LAR

	Kvols ASCO 2005
Complete Response	0
Partial Response	33%
Efficacy (evaluated in 28 pts)	
≻Fatigue	14%
➤Weight loss	34%
Gastro-intestinal disturbances	5-28%
Safety / Tolerability (evaluated in 35 pts)	

NUIS, ASCO 2003

Treatment with SSA high doses in Neuroendocrine Tumors

	n	Tumor	Agent	SR (%) HR(%)	TR (%)
Saltz, 1993	34	20 CT, 13 IST	Octreotide	71	33	PR 0%, SD 50% (5 mesi)
Antony 1993	13		Octreotide 6 mg/d	-	-	PR 31%, SD 15%
Scherubl, 1994	12		Lanreotide 30 mg/14 d	40-90	-	SD 58%
Arnold, 1996	103	64 CT, 39 IST	Octreotide 200-500 µg 3x/d	85	33	PR 0%, SD 36.5% (18 mesi)
Di Bartolomeo 1996	43	31 CT, 12 IST	Octreotide 1500-3000 µg/d	73	77	PR 7%, SD 27 %
Ruszniewski, 1996	39	СТ	Lanreotide 30 mg/14 d	55	42	PR 0%
Eriksson, 1997	19	TOT 6 IST	Lanreotide 12 mg/d	-	58	PR 5%, SD 70 %
Tommasetti, 1998	18	10 CT, 8 IST	Lanreotide 30 mg/10 d	90	33	SD 78 %
Faiss, 1999	30	20 C.L. 10 UKW	Lanreotide 15 mg/d	70	43-52	CR 3.4 %, PR 3.4 %, SD 37%
Wymenga, 1999	55(PD)	48 CT, 7 IST	Lanreotide 30 mg/ 14 d	45	47	PR 6%, SD 81%
Ricci, 2000	25(PD)	12 CT, 13 IST	Lanreotide 30 mg/ 14 d	70	42	PR 8%, SD 40% (8.5 mesi)
O'Toole, 2000	33	CT	OCT 600 μg/d, LAN 30 mg/	0 d 61	54	
Ducreux, 2000	39 (PD)	CT	Lanreotide 30 mg/10-14 d	64	50	PR 5%, SD 49%
Aparicio, 2001	35 (PD)	22 CT, 12 IST	OCT 300 µg/d, LAN 30 mg/ [~]	4 d -		PR 3%, SD 57%

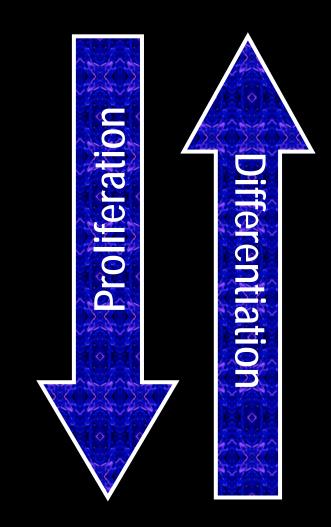
SR: Symptomatic Response HR: Hormonal Response TR: Tumor Response

Kaltsas et al., Endocr Rev, 2004


Octreotide Pamoate

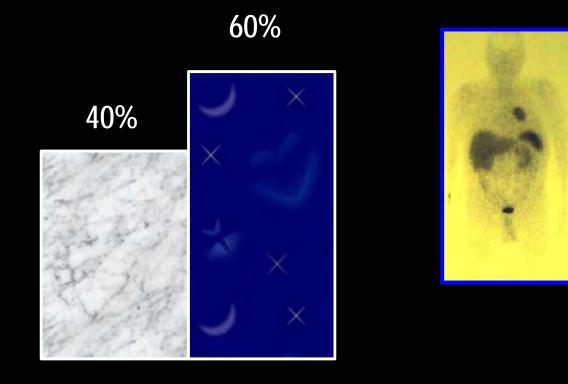
160 mg i.m. / 14 days x 2 months and then 160 mg /28 days 12 pts with progressive metastatic ileal NET

<u>Biochemical Response (CgA - 5HIAA)</u>					
≻OR	4/12 - 2/12				
SD	7/12 - 9/12				
►PD	1/12 - 1/12				
Tumour Response					
≻OR	0				
SD	9/12 (75%)				
►PD	3/12 (25%)				


Well Differentiated Neuroendocrine Tumor *(benign or potentially malignant)*

Well Differentiated Neuroendocrine Carcinoma

Poorly Differentiated Neuroendocrine Carcinoma


WHO Classification of Endocrine Tumors, 2000

Chemotherapy in Poorly Differentiated NET

etoposide-cisplatin

Survival	n	OR	Duration	Mean Survival	3 ys
Jurvivar		%	months	months	%
Moertel, '91	18	67%	8 (3-21)	19	35%
Hainsworth, '93	23	78%	-	-	-
Mitry, '99	41	41%	8 (2-24)	-	<20%

Octreoscan performance in 41 pts with large cell poorly differentiated neuroendocrine carcinomas

Octreoscan

Positive

Negative

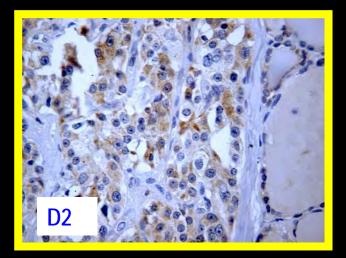
Faggiano et al. In submission Eur J

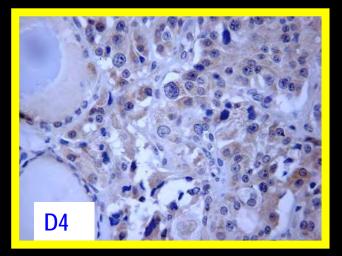
 \sim

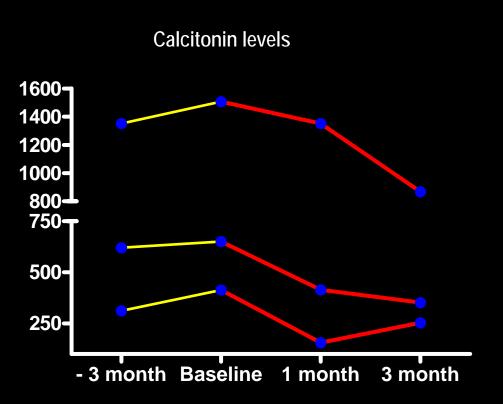
SSA + Chemotherapy in the treatment of poorly differentiated NET

Retrospective study: 18 patients with large cell PD NET

Preoperative Octreoscan: 10/10 pts positive neuroendocrine carcinoma localized in Radical Surgery + lymphadenectomy: 18/18 three different endocrine glands: response Adjuvant Therapy: - Radiotherapy if TNM > lb:: 13/18 pts


- Octreotide LAR 20 mg/28 days in pts with positive preoperative OS: 10/18 pts


Tumor Relapse: 9/18 pts


- with Octreotide : 1/10
- without Octreotide : 8/8

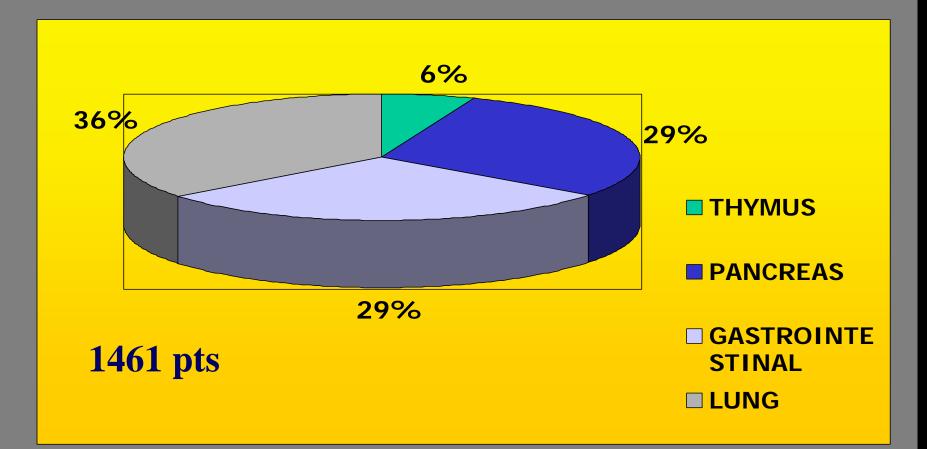
Dopamine agonists

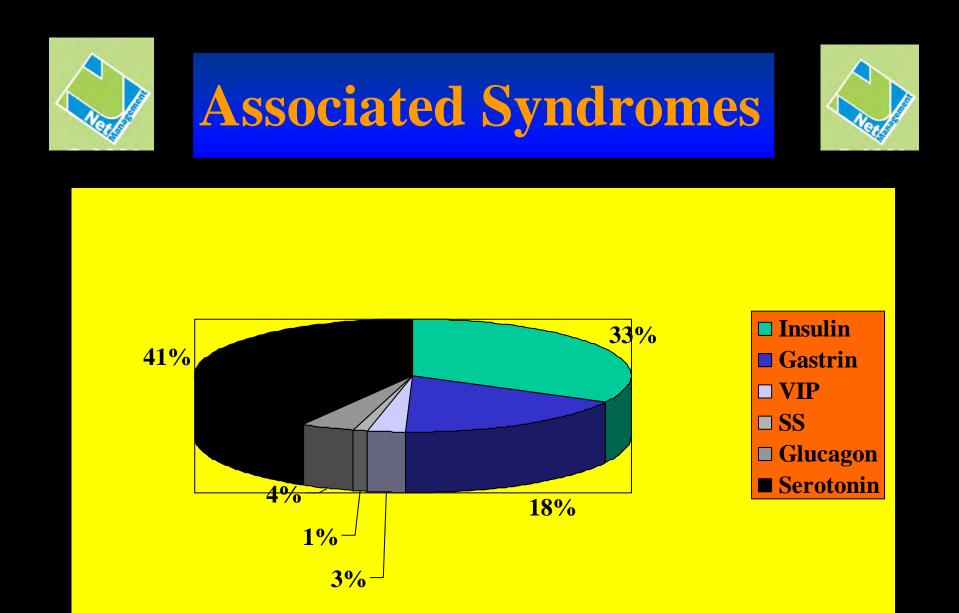
Perspectives

52 Centri riceived the specific software

Patients & Methods:

•Data regarding of 1481 patients were collected.


•NET followed in 16 Italian referral centres from 1990 to 2006 were enrolled in the study.


•Data were collected utilising the *NET MANAGEMENT Software* (Ibis Informatica, Milan) developed specifically for the study

16 contibuted to this preliminary data presentation

Distribution according to WHO classification

•The data from this large series confirms that GEP-NET and T-NET are an heterogeneous group of tumors.

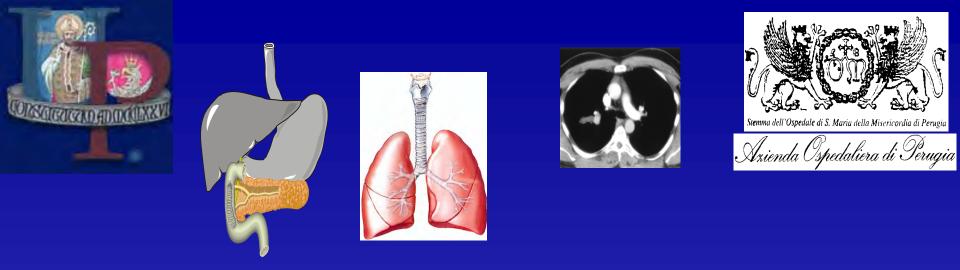
•CT and Octreoscan represents a indispensable tool for tumour staging and diagnosis.

• This procedure together with FDG-PET adds helpful information to establish prognosis and therapy and is usseful in follow-up.

•Endoschopic tecniques (and echo-endoschopy in selected cases) play a crucial role.

• The prospective study, in course, will be essential to evaluate impact of diagnostic and therapeutic procedures.

Net Management


CENTRO

- 1 Centro 007 Udine
- 2 Centro 023 Reggio Emilia
- 3 Centro 047 Treviso
- 4 Centro 066 Genova
- 5 Centro 069 Napoli
- 6 Centro 115 Viagrande
- 7 Centro 131 Napoli
- 8 Centro 133 Verona:
- 9 Centro 139 Sassari:
- 10 Centro 140 Torino
- 11 Centro 143 Milano:
- 12 Centro 149 Perugia
- 13 Centro 151 Ancona:
- 14 Centro 173 Bologna
- 15 Centro 174 Pol. A. Gemelli Roma
- 16 Centro 178 Albano Laziale

SPERIMENTATORE Grimaldi Valcavi **Roiter/De Menis** Ferone/Minuto Colao/Faggiano Giuffrida **Biondi**/Pulcrano Davì/Francia Fanciulli Ghigo/Grottoli Manzoni/Franchi Ferolla/Santeusanio Boscaro/Arnaldi Tomassetti/Campana De Marinis/Bianchi Papini/Nasoni

Conclusion

- Somatostatin analogues are potentially effective in the majority of patients with Neuroendocrine Tumor; new formulations, new SSA with variable spectrum of binding to SSTs and the evaluation of SST subtype expressed in the tumor tissue may increase the proportion of NET pts responding to SSA therapy
- In the next years, new compounds acting on different molecular mechanisms involved in NET pathogenesis will be available to increase the anti-proliferative effects of SSA, INF or chemotherapy

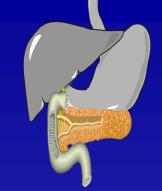
Medical Treatment of "NON FUNCTIONING" WELL DIFFERENTIATED NET

. <mark>Piero Ferolla</mark>

Dept. Internal Medicine and Endocrine Sciences

University of Perugia, Perugia, Italy

OBJECTIVES OF NET TREATMENT


- HORMONE RELEASE INHIBITION
- IMPROVEMENT OF THE QUALITY OF LIFE
- TUMOR SIZE REDUCTION
- IMPROVED SURVIVAL

Surgery **Debulking Procedures SST-Analogues Interferon and others Chemoembolization Chemotherapy Symptomatic Treatment** Octreother

MULTIMODAL THERAPEUTIC APPROACH

Well Differentiated NET

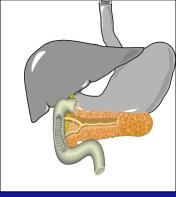
First: SURGERY !!

Curative Surgery

Palliative Surgery

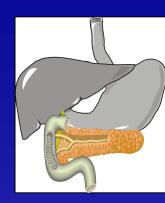
Follow-up

MEDICAL THERAPY


Nota C.U.F. 40

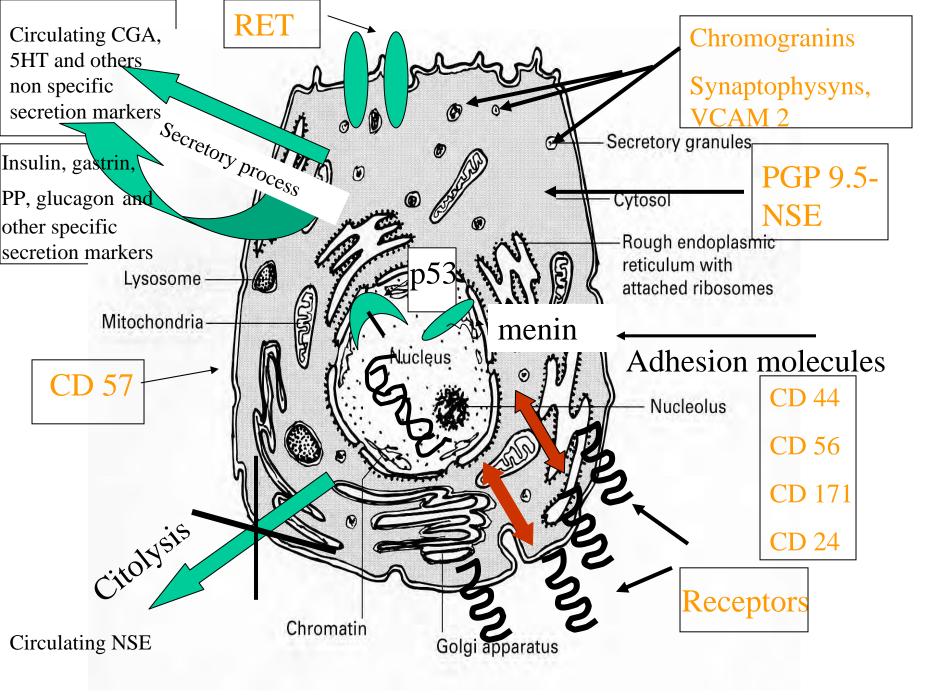
La prescrizione a carico del SSN, su diagnosi e piano terapeutico di centri specializzati, Universitari o delle Aziende Sanitarie, individuati dalle Regioni e dalle Province autonome di Trento e Bolzano, è limitata alle seguenti condizioni:

L'indicazione al trattamento dei tumori "non funzionanti" è controversa e deve essere limitata a quei casi in cui è dimostrata la presenza di recettori per la somatostatina, in particolare con Octreoscan, che, pur con limiti di sensibilità, rappresenta l'unico test disponibile per rilevare la presenza "in vivo" di una sufficiente espressione di recettori per il farmaco in oggetto.

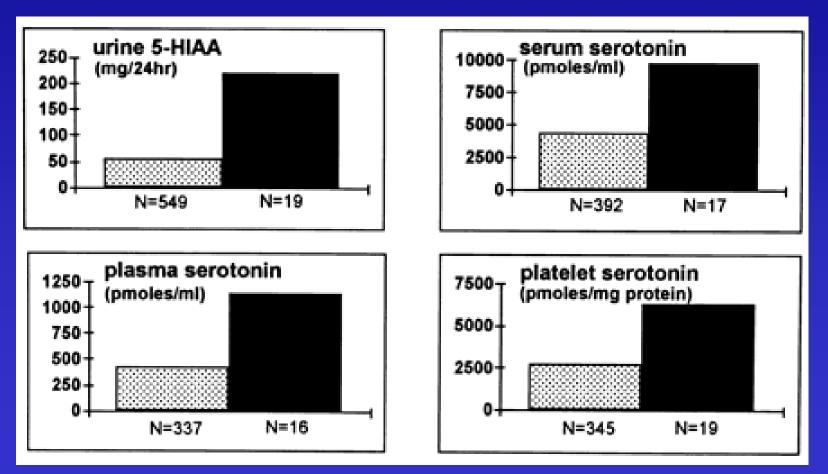

NET: definition

"FUNCTIONING"

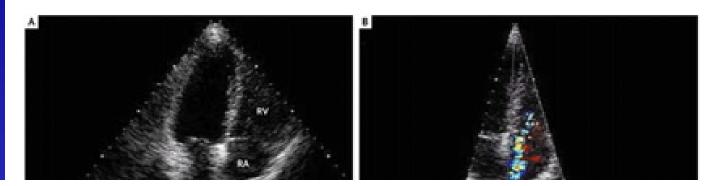
ASSOCIATED with a CLINICAL SYNDROME "Non FUNCTIONING""


Not ASSOCIATED with a CLINICAL SYNDROME

NET *not* associated with clinical syndrome


- PANCREATIC POLYPEPTIDE (PP)
- NEURO-SPECIFIC-ENOLASE (NSE)
- HUMAN CHORIONIC GONADOTROPIN (HCG) α AND β
- ISLET AMYLOID POLYPEPTIDE
- CHROMOGRANIN (Cg) A,B, AND C

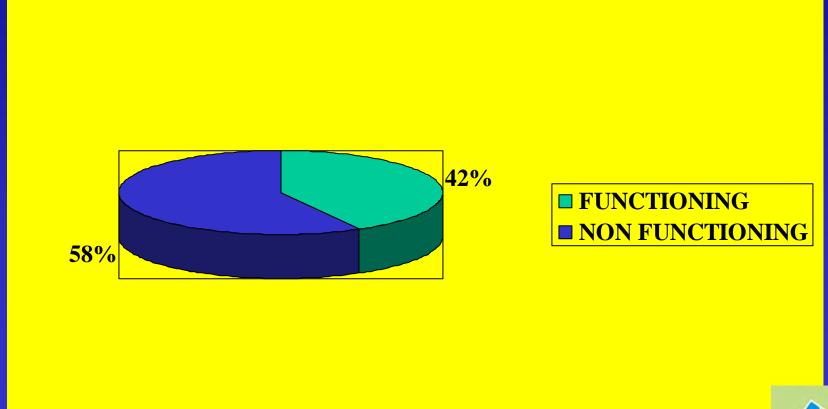
from Ferolla, Faggiano et al. 2006


Carcinoid Heart Disease:

Correlation of High Serotonin Levels With Valvular Abnormalities Detected by Cardiac Catheterization and Echocardiography

Circulation 1995

Carcinoid Heart Disease: *Factors Associated with Progression*



Conclusions Serotonin is related to the progression of carcinoid heart disease, and the risk of progressive heart disease is higher in patients who receive chemotherapy than in those who do not.

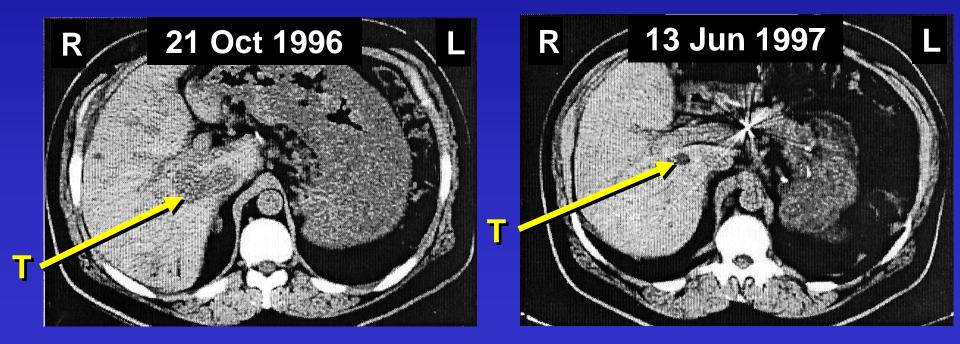
Møller et al NEJM 2003

NET GEP: Hypersecretion

Obiettivi della Terapia Medica nei NET

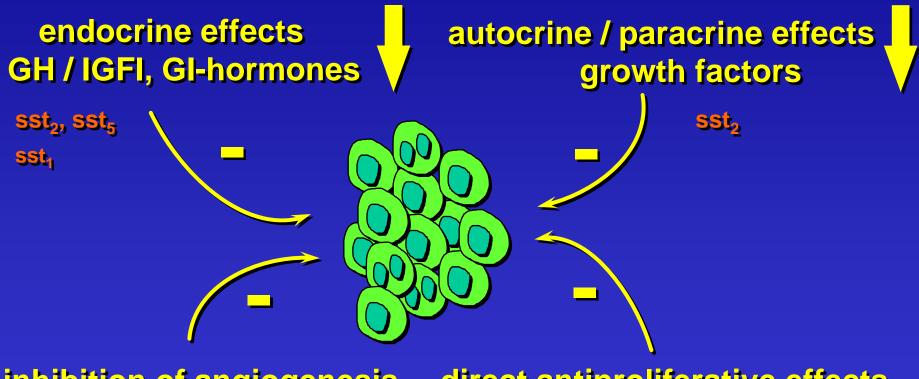
- Controllo dei sintomi correlati all'ipersecrezione
- Miglioramento della qualità di vita
- Controllo della proliferazione tumorale
- Prolungamento della sopravvivenza

PROSPECTIVE STUDY OF ANTITUMOR EFFICACY OF LONG-TERM OCTREOTIDE TREATMENT IN PATIENTS WITH PROGRESSIVE **METASTATIC GASTRINOMA**

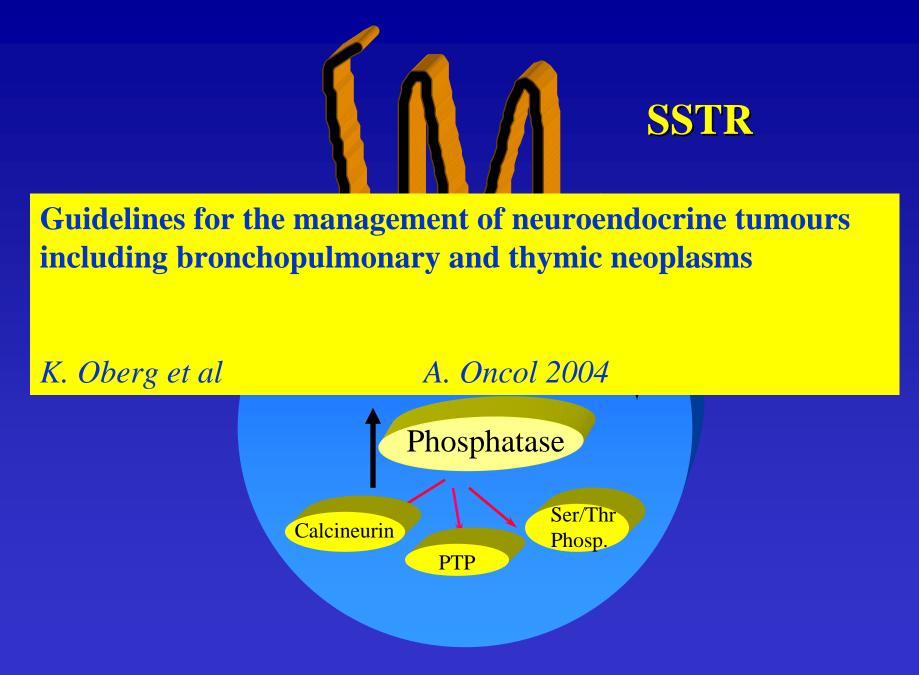

Pt treated only with PPI _____ 20-40% 5 y survival

53% of patients had a tumor growth response to octreotide
(47% tumor stabilization and 6% decrease in tumor size)
low incidence of serious side effects compared to other antitumor treatments commonly used

•the growth response is long-lasting


Shojamanesh H et al. Cancer 2002

The Effect of Octreotide (2 x 200 µg/day) on Tumour Size in a Patient with Metastatic Gastrinoma


Shojamanesh, et al. 2002

Potential Mechanisms of Tumor Growth-Inhibitory Effects by Somatostatin Analogs

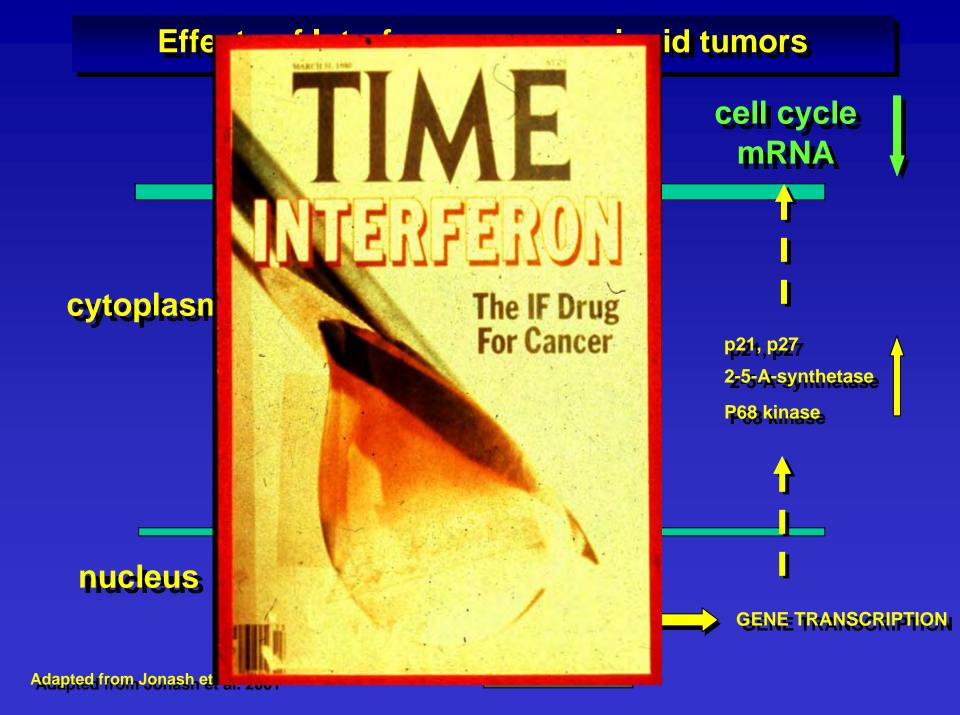
inhibition of angiogenesis direct antiproliferative effects sst₂, sst₃

Modulation of immune system

da Patel, J.En.Inv. (1997) modif.

MEDICAL THERAPY in NET

Carling Car


Lack of controlled studies !!

- small numbers
- unclear inclusion criteria
- different tumor subtypes
- indolent behavior, long follow-up
- spontaneous variation of growth
- stable disease vs. biochem. resp. vs. objective resp

Single agent chemotherapy in carcinoids : multiinstitutional phase II-III studies (except 5Fu and STZ), first/second line, W=WHO

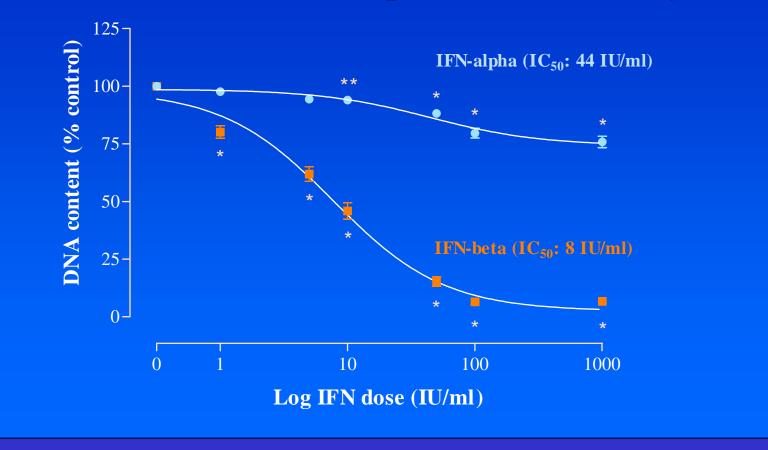
Drug authors	n	CR/OR		duration m	G3/4
5Fu Moertel C 1983 DoxorubicineEngstrom P 1984 Cisplatine Moertel C 1983 Etoposide Kelsen D 1987	19 81 15 20	0%/26% 1%/21% 0%/6% 0%/0%*		3 6.5 3	UK ≻ 25% UK UK
Strepotozoticine ^{Oberg K 1987} Carbolatine Saltz L 1993 Dacarbazine Bukowski M 1993 Paclitaxel Ansell M 2001 Docetaxel Kulke M 2004 W Gemcitabine Kulke M 2004 W	7 29 56 15 21 9	0%/14% ** 0%/0%* 0%/16% 0%/8% 0%/0% 0%/0%	:*	2.7 - 2.7 3.2 -	UK UK 29% 61% 24% 22%
Campto** Ducreux M 2006 W	9 18	0%/5%		6	40%

* 2 and 5OR reclassified as PDEC ; ** : + LV5Fu; ***: biological responses

PATIENTS = 80

LOCALIZATION OF THE	PRIMARY:
FOREGUT	36 (45%)
MIDGUT	30 (37.5%)
HINDGUT	3 (3.8%)
UNKNOWN	11 (13.7%)

TERAPY:


LANREOTIDE IFN-ALFA COMBINATION 25 (31.3%) 27 (33.7%) 28 (35%)

PROSPECTIVE, RANDOMIZED, **MULTICENTER TRIAL ON THE** ANTIPROLIFERATIVE **EFFECT OF** LANREOTIDE, **INTERFERON ALFA, AND THEIR COMBINATION FOR THERAPY OF METASTATIC NEUROENDOCRINE** GASTROENTEROPANC **REATIC TUMORS – THE** INTERNATIONAL LANREOTIDE AND **INTERFERON ALFA** STUDY GROUP

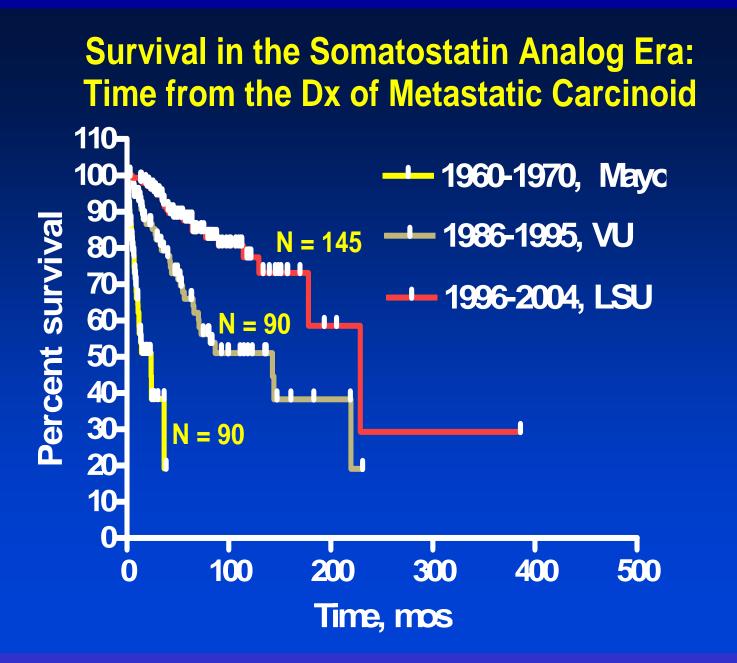
Faiss et al JCO 2003

Role of type I IFNs in the therapy of NETs

Effects on BON cell proliferation (6 days)

(Vitale G et al. Cancer Res 2006)

Obiettivi della Terapia Medica


•Miglioramento della qualità di vita

•Controllo dei sintomi correlati all'ipersecrezione

Contractor

•Controllo della proliferazione tumorale

•Prolungamento della sopravvivenza

LB Antony et al 2005

THE FUTURE

High dose treatment

- Faiss S et al
- Eriksson B et al
- Eriksson B-Oberg K
- Filosso PL et al
- Eikssonn et al

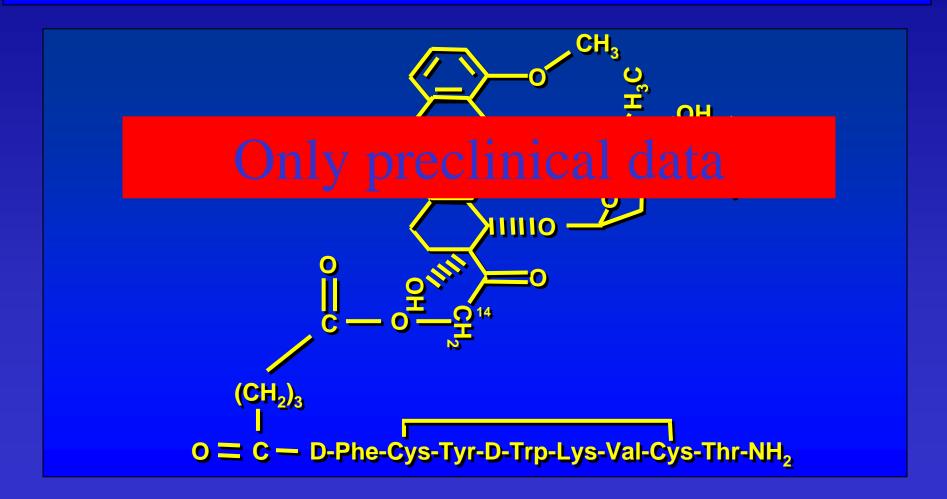
Digestion 1999 Digestion 1996 Ann Oncol 1999 EJCTS 2002 Digestion 1999

•Trial included only pt. with progressive NET tumors on stardard doses

•Few studies showed further additional antiproliferative effect in pt. failing on standard doses

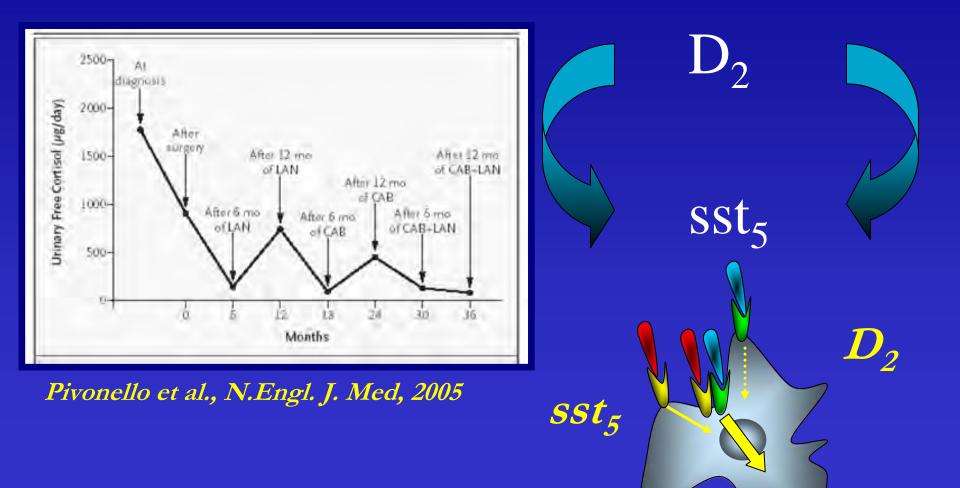
•Increased number of apoptotic cells on serial tumor biopsies

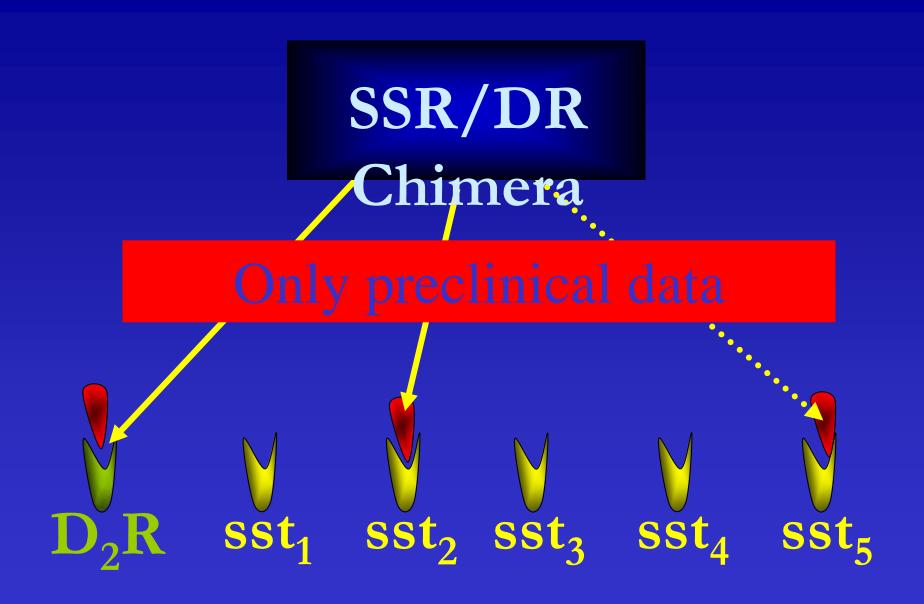
Ultra High-dose treatment


- Octreotide Pamoate 160 mg (Onco-LAR) every 2 week for 2 months, then monthly
- 12 advanced midgut carcinoid in progressive disease (median duration of disease more than 5 y)

•TUMOR SIZE and BIOCHEMICAL MARKERS stabilization in 75% for a median of 12 months •10/12 symptomatic improvement of flush and diarrhoea

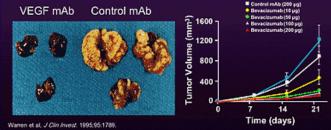
EJE 2004 151 107-112


Cytotoxic SS Analogue


RC-121 with N-terminal by bound 2-pyrrolino-doxorubicin (AN-238)

Cancer 2003

Lung "atypical carcinoid"



Improved free survival and rapid sustained decrease in tumor perfusion among pt with advanced carcinoid treated with BEVACIZUMAB (Avastin)

Yao J et al ASCO 2005

Antibodies: Bevacizumab

- Neutralizing humanized anti-VEGF monoclonal antibody (derived from mouse mAb A4.6.1)
- Known as bevacizumab, Avastin[™], rhuMAb-VEGF
- Inhibited tumor growth in mice

Design: random BEVACIZUMAB or PEG IFN or both added to OCT LAR

Bevacizumab (rhuMAb VEGF Avastin™)

- Recombinant humanized anti-VEGF MAb
- Binds and neutralizes all forms of VEGF
- T_{1/2} 14-21 days
- Reduces free plasma VEGF levels to undetectable

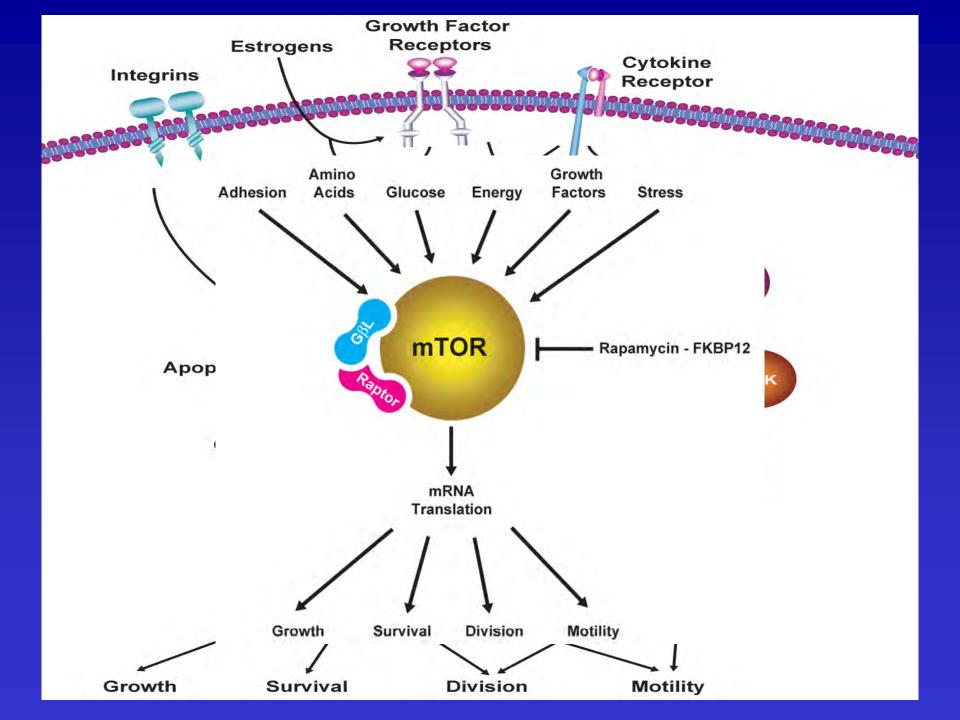
	BEV	PEG IFN
	(22)	(22)
PR	4	0
SD	17	16
PD	1	6

Conclusion: superior progression free survival and rapid and sustained reduction in tumor blood flow, blood volume and permeability by functional CT

Early data on the efficacy and safety of the novel multiligand somatostatin analog, SOM230, in patients with metastatic carcinoid tumors refractory or resistant to octreotide LAR

II open-label study sst SOM230 450-1200 µg bid sst **SAFETY : generally well tolerated** sst **EFFICACY:** effective in controlling diarrhea & flushing sst sst 7/21 patients (33%) had partial response; no CR FIRST DATA PRESENTED THE 15 OF MAY AT THE ASCO CONFERENCE

NH₂

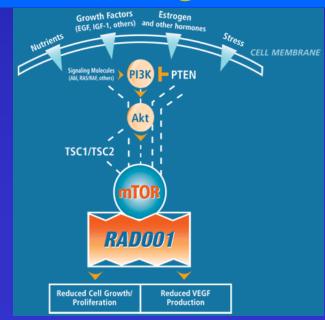

Results: Efficacy of SOM230

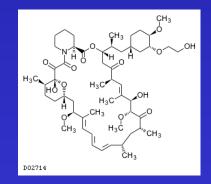
- In this interim analysis, 28 patients qualified for efficacy assessment
- 7 patients were partial responders to SOM230 therapy. 1 additional patient initially had a PR to therapy then subsequently achieved the criteria for CR
- 3 PR patients were receiving SOM230 600 µg bid, 2 were receiving SOM230 750 µg bid and 2 were receiving SOM230 900 µg bid. The patient with CR to SOM230 therapy was receiving 900 µg bid

Results: Safety and tolerability of SOM230

Adverse events were evaluated in 35 patients
Adverse events were primarily gastrointestinal, such as
Nausea (28.6%)
Abdominal pain (20.0%)
Diarrhea (5.7%)
Flatulence (5.7%)
Weight loss (34.0%) and fatigue (14.3%) were also reported

Phase II study

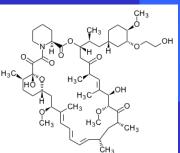

OCTREOTIDE LAR


30 mg every 28 gg

+

RAD001

5 mg p.o./d advanced low grade neuroendocrine carcinoma



Yao JC et al ASCO 2006

Generally well tolerated:

CTC Grade 3/4 toxicity include: anemia (1) thrombocytopenia (1) aphthous ulcer (2) diarrhea (2) edema (1) fatigue (1) hypoglycemia (1) nausea (1) pain (1) rash (1).

most common toxicity is mild aphthous ulceration.

Phase II study of RACOO1 and Depot Odreoticle in patients with advanced lowgrade. neuroenchorine carcinoma

Jan 147, Mr. Reserved 1 Ten 1 1415, Const. Sona Alacha Can un Jacks Jannahok 7 Sona Part Administrative Antidersky 1 Landon selection for Conference of Networks (Network) Advance (Network) Products (Network) and Advance (Network) Advance (Network) (Network) (Network)

Update Fibrary

Nale an History of Service States nealer alls as 90; physicspirit 104. MOR MR, is saturate the set of the C. Distance in the second se

as adding the log part for provide 1. any Sector

Parts Berinit pirt, ire investo 3 pirt. natura, Allis ad, Alex pia atada, 1976. Anto agasar da ra, Al. Ana ran Ale, 720 Mala Palata brig.-R. anto 1 are 4 har alerina) (TD 17 annua 9 Anni-16, and 1264) 18 an àirde Anna 18 An Anna 18 Anna 18 nagatarin bilguri harris (fr. 10.476) Maria I andres angele di anta (f. Maria II. anta interferenza di anta (f. ¹ Instal annua 1019 (ar ingilia a bardar 121.121) India Islam marka (Manlagi parta (Malapate) belaytet at the G state and stated

Analysis (ARCP) Borg proof Cred Make 1 and the office Republic Article and the hor-coloring and and and the formation of the hor-off and Qual Sectors on her higher Chisalara bishalar, faraha bisayasidandi.

Res lines and

Low an an an an an and a second se origination are thread cathores. Unloader event haps open an hole. We old der mehr, his an teriholisi bacthers that the second. Time server managed by the first state of the server server as the server server server server server server server s letting of stars susseling man of transfer to an earth attack h respectively if Delot PC2 and has been executed in frees street. Mich. No. notes like callent have avoy paint a -ihabana adapa k. 14 bis casa kasa ka has another it he incare C.S. Fisher KIFA AN BC IN SAF-ON MARK IN JOINT HER.mill have to be a her mak that BACKAD-P.

Cidenticiel Service in removing the local states ad My and has been clean both to inhibit VEF Part CF Canada n add Loron .

We incoholo for ellig to the new many to astron TSC of tackate and bld- he call-out ac-states of scales Have nonzy schule have a see mentals . Fallette searchead in a rook Persident T99 Kr. Wassings at the I show be as in the complete set Ritté t-managementecutore.

denses dibake seer mapane to a a after by RELLT & pairs -b. reasoning the second share with second Course and a second second second town hit bole to security Consumption of Math store and the HE OF AN HE DECOLORISE IS NO. 200 - 20 A

Forders - JG

- · RELEASE COME
- Denor Translations Services To deal 1-66
- · Mittigentre courte

for an and knowledge and he finds a s

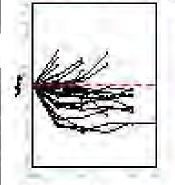
a fiftitiefen acaeled an belans b b b inéan.

There be described

Sa Hite	e e%
. Best	<u> 6 684</u>
Disease a sus sere	han .
PO I	2 94
20	4, 174
house dates	2 64
Frit Tax men	
Oechap	- U
iveritor .	
En.Lonet	6
Inspek ankalkaka	6 - Contra
Rhey de	and the second second
Fangel	1 1 1 1 1 1 1
Long	P subg
Fanciente	u etd
Toyot .	T UT
Heat	
Section 1	1.174
14 heges	
Ready	1.14
Bini	1 24
Later-ditter	2 08
In the second	and the second

dat CD for strikely paids as and the first of the second second

Arrest-of day	H	•
(cranh		641
Pinalog types		21
Madagada		14
Haingda Laingdal	1	- AL
Ciatras.	2	- a j -
teller	1 P -	- 441
the second	-	- AL
1-Description (1	a.j
Produktor .		aj
i i gagi mgi minin		44
Vanil optimized Han	10	- 6 (
Pase		aj
Fadia.	1	- al
Mit at	1	141


CORNER (COLOR.

	Cual	Casha	Mercell
in.	pr.M.	eril.	and.
Æ	Pruht -	intia	in de l
A.	200 Del	e di ti	desire)
RD.	-inde	(iiid)	Just
RFS -	676		1

COTOIRs-&RUISSARS.UND and there are considered and بالملاجعة المحجوجا

Ceptorble why as call on a have a dail to no tably in . Ov-President and prime IR - on condense of deber barne bestimester ber of a low many. No many product that is not eeleven eler marge-ou blocks. IR

Surnet law at least submeriance

Editor Chineseen

citor Relifica dos Rei dos nacionoceros Astronities, Indifferentiation or Mana' BORN & BRAND BERGER CARANT has schemasche in derrorantie der

Regarded multimical

Remarks & beauti

Ewb

Contractor

Relative Seven to will be wall that are beand a long thread the set of the set and the part of the state of th

is suite debraiche as as sélicie they will associate the second secretaria - li be ontres to hebsame in the second stress.

to considerate de a laborar d'autiand of Riflation is carine with with managede over diff sin diane. acot de chan interacción salls be achie of PATABLE b bie scola in .

- 1. Phil T. Louista M. Kilkings & basisto, Bassendo estavato, la press alter SC i gang it non-dine-at AND IN & DO- IN DOMA pained and him to see a 200
- 2. Chald-Scam Code and Alabora is a particular distance of the locate under Deutschlich 20042
- Jankon S. K. Bittersteinerson R. Of mit Williams States CLASS HER PERSONS SPORT-ID Parametrikanalani contek definitions filter faulter constraints and
- . Cated DeFee 516 54 Section distanti i Casino V, es di Militica' Mandri analekti gindi dari iki conclusioning becausing the
- 5. Roll I He Reichaules C. Charle is not shad this is an and different to all a submachine. south exercise OR base Reus closedice.

Service and Long Social

6th AME Italian Meeting 3th Joint Meeting with AACE Verona, Italy October 27-29, 2006

NET: Treatment of Persistent Disease

Chemo-Embolization and Thermal Ablation of Metastatic Disease

Giancarlo Bizzarri, Dario Valle, Antonio Bianchini, Vincenzo Anelli, Stefano De Nuntis, S. Pacella and Claudio Maurizio Pacella

Radiological Interventional and Diagnostic Department Regina Apostolorum Hospital Albano Laziale

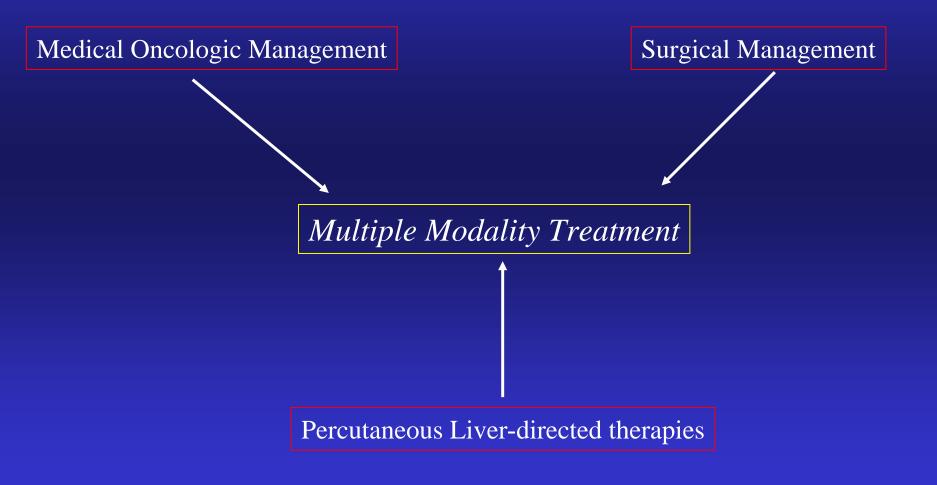
Introduction: epidemiology

- Rare tumors with variable clinical course
- Often indolent ("cancer in slow motion")* but frequently with incurable metastatic disease

Introduction: natural history

- Presence of bone and liver metastases dramatically worsen the prognosis of patients
- Reported survival rate with metastatic liver disease is 0 to 40% versus 70-80% without liver metastases at 5 years
- In these patients survival rate is influenced by the presence of obstructive symptoms or symptoms related to the peptide secretion

Introduction: topic


- the role of image-guided oncologic liver directed therapies in the management of patients with NETs hepatic metastases
- how radiological intervention procedures interact with medical and surgical treatments in these difficult clinical scenarios

Introduction

• Rationale for therapies of NETs has to take into account :

- a) The quality of life (carcinoid syndrome, compressive and obstructive symptoms from bulky tumors and pain from bony mets)
- b) The overall survival (carcinoid syndrome, hepatic failure from multiple liver metastases or obstructive jaundice)

Introduction Therapeutic Approaches

Introduction

the role of radiologists

- Despite surgery and medical oncologic treatments carcinoid syndrome and tumor bulk may progress
- It is in this scenario that radiologists have an established primary role
- In this case the treatment has to be tailored to the goal (i.e.: reduction of tumor bulk, hormonal palliation, conversion to resectable status)

Introduction

Radiological Interventional Approach

- From the radiological standpoint the minimally invasive liver directed therapies can be classified in two groups:
- a) Local ablation therapies
- b) Percutaneous trans-arterial-catheter treatments

Local Ablation Therapies

Radiological Interventional Approach

Injective

Percutaneous Injection

(Alcohol, Acetic Acid, Hot Water,Gene Therapy)

Phisical Ablation

Laser Ablation Radio Frequency

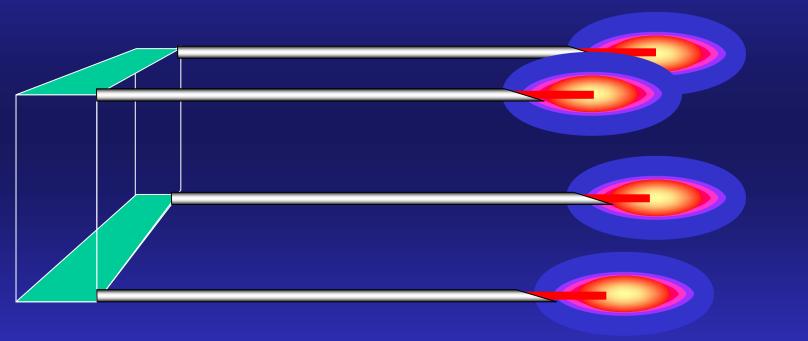
Micro-Wave

Cryo Ablation

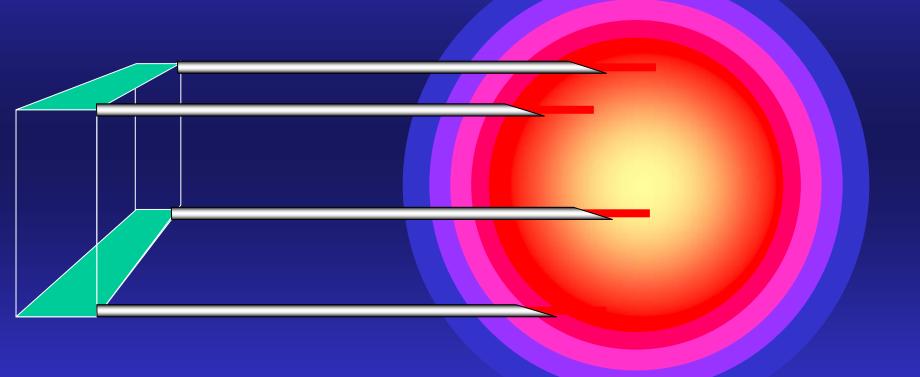
HIFU

Rationale for Local Ablation Therapies

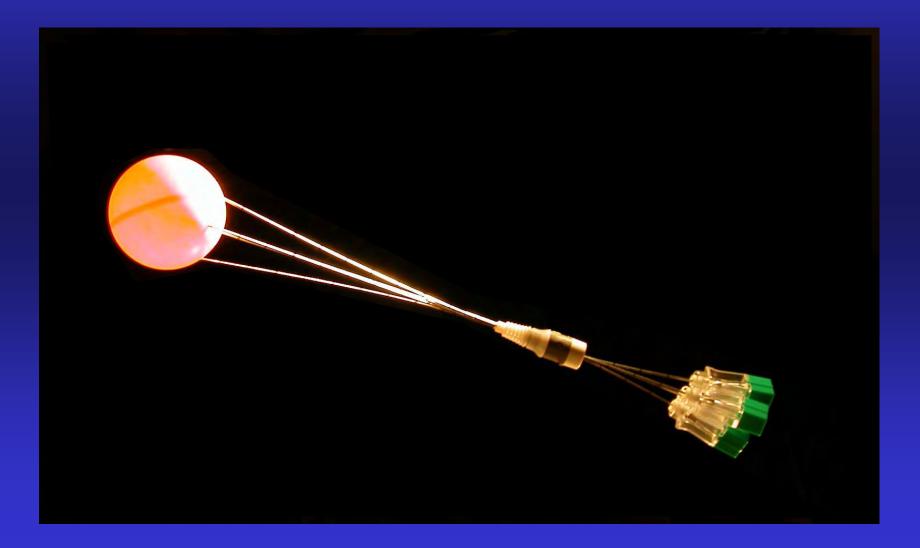
- Efficacious in tumor killing
- Rapid
- Safe
- Inexpensive
- Selective


Local Ablation Therapies: drawbacks

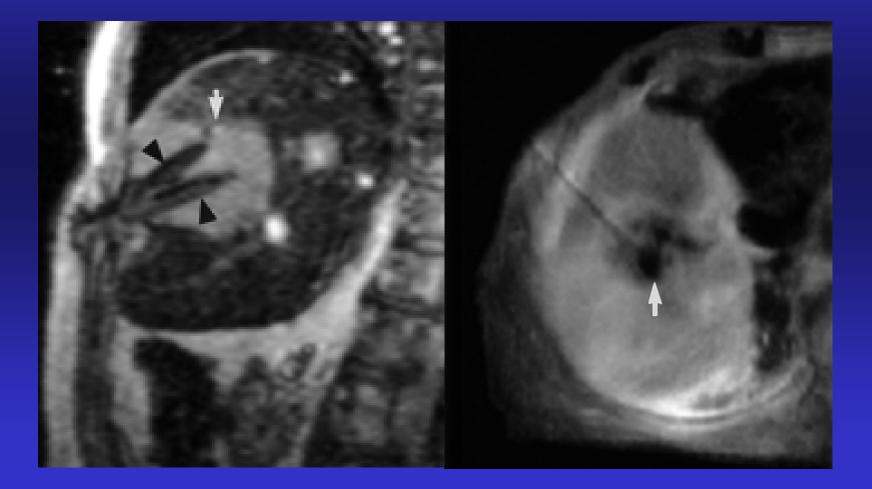
• Local efficacy similar to surgical resection

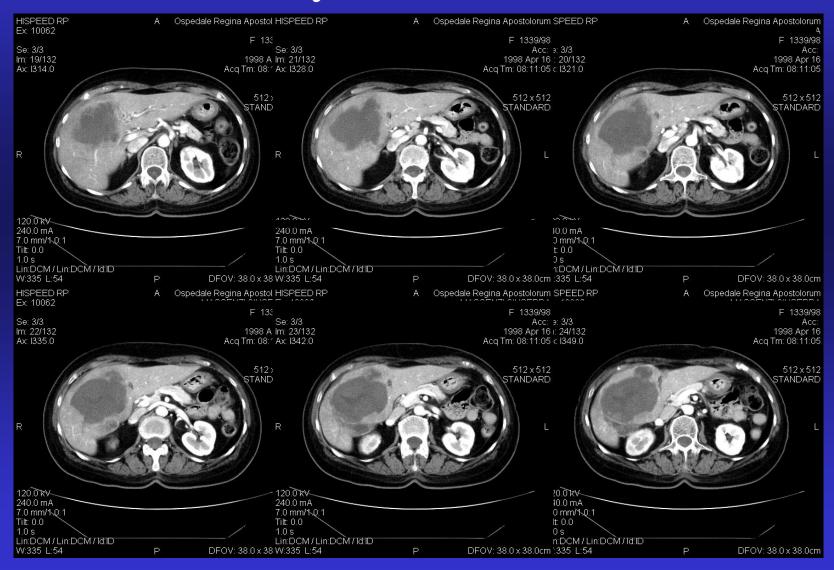

• Lesions detectable on one imaging modality

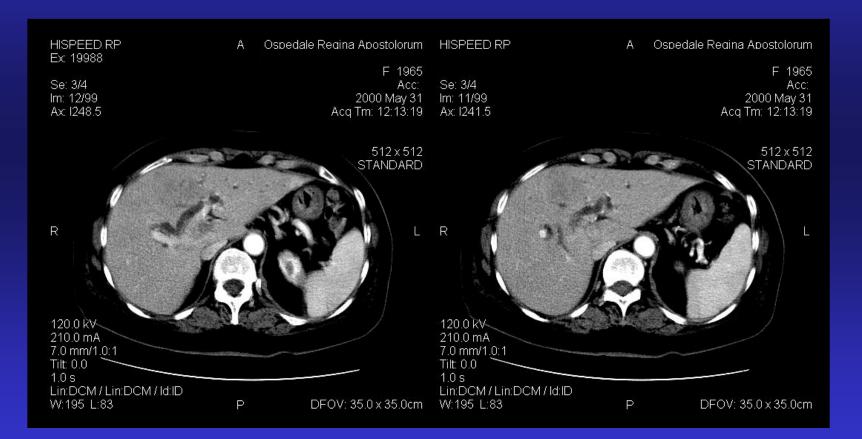
• Not indicated for large and multiple lesions when curative ablation is required (Less than 5 lesions smaller than 4 cm.)

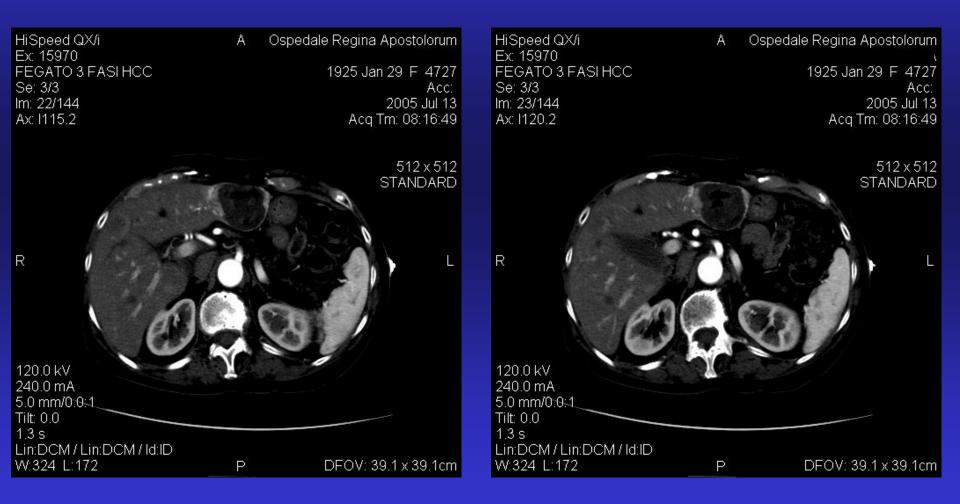

Laser Ablation (multifiber technique)

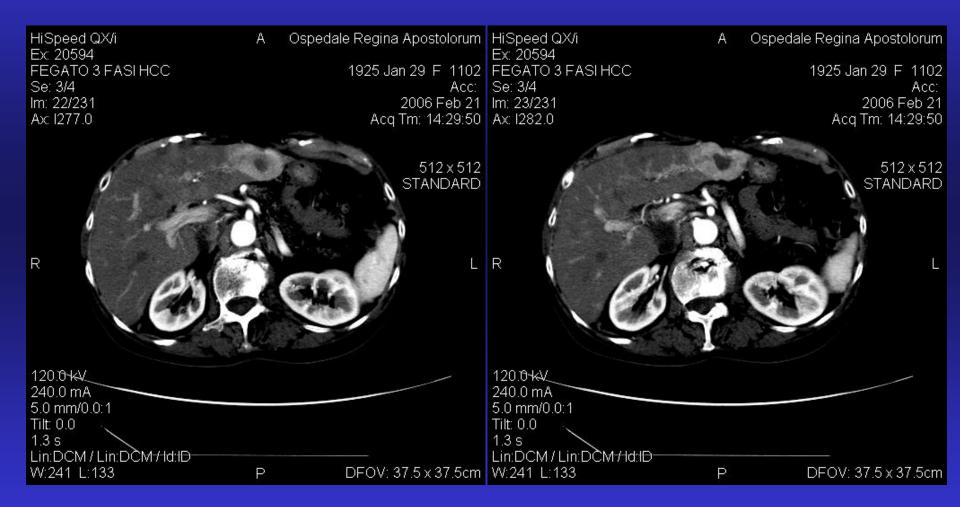
Laser Ablation (multifiber technique)

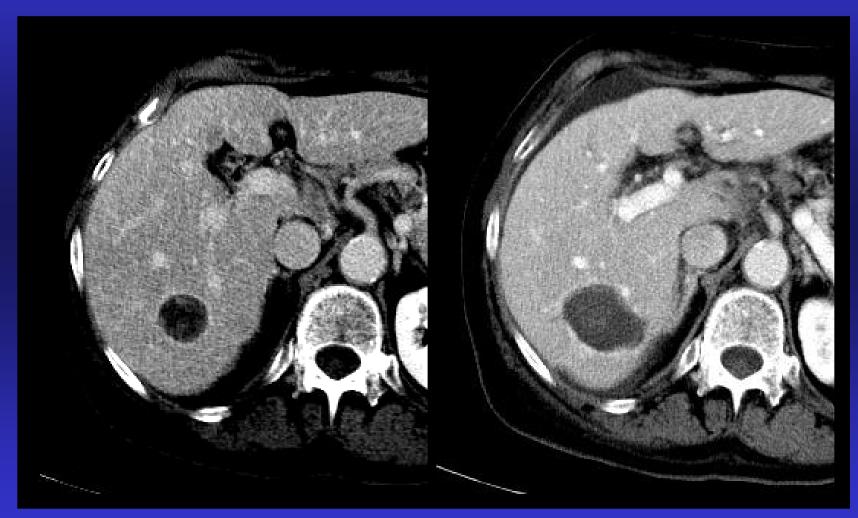

Laser Ablation (multifiber technique)

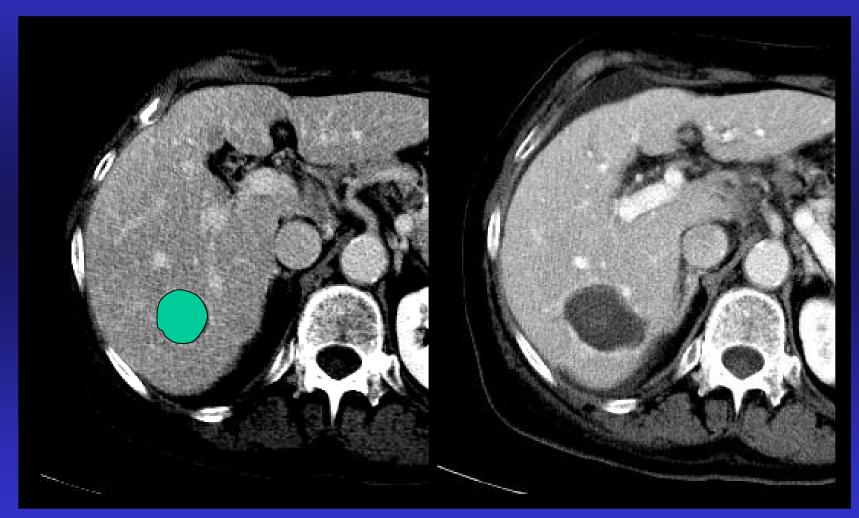

Laser Ablation (multifiber technique) US guidance

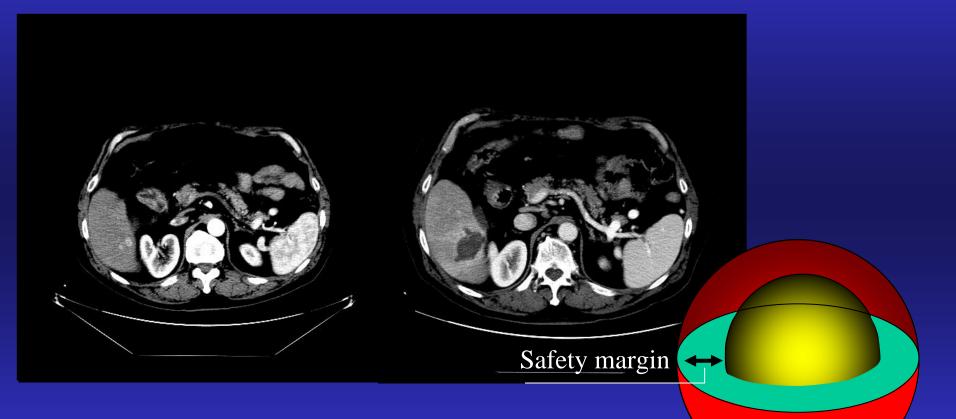

Laser Ablation (multifiber technique) MRI guidance


Laser Ablation (multifiber technique) cytoreduction


Laser Ablation (multifiber technique) cytoreduction


Laser Ablation (multifiber technique) cytoreduction

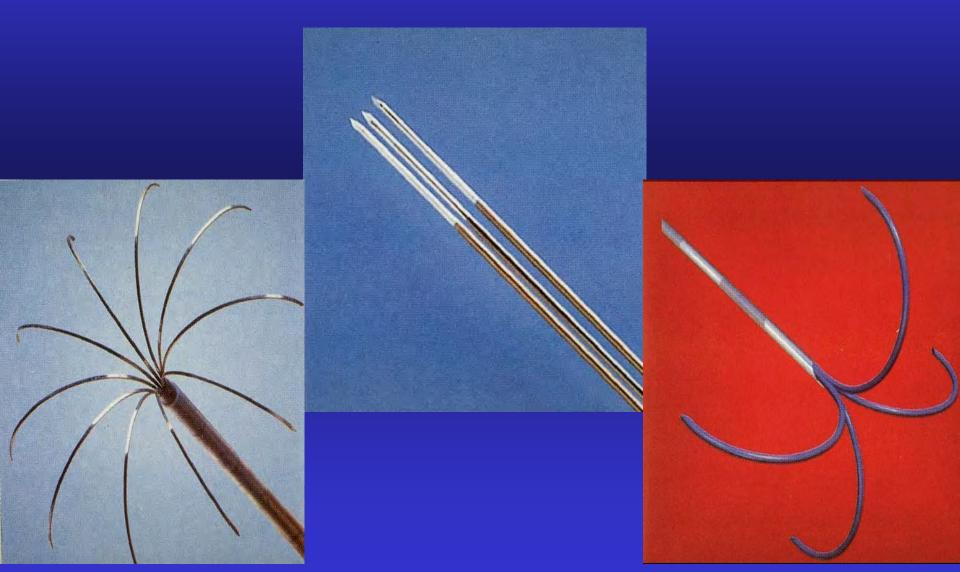

Laser Ablation (multifiber technique) cytoreduction


Laser Ablation (multifiber technique) curative ablation

Laser Ablation (multifiber technique) curative ablation

Laser Ablation (multifiber technique) curative ablation

Gerald D. Dodd, AJR 2001;177:777-782

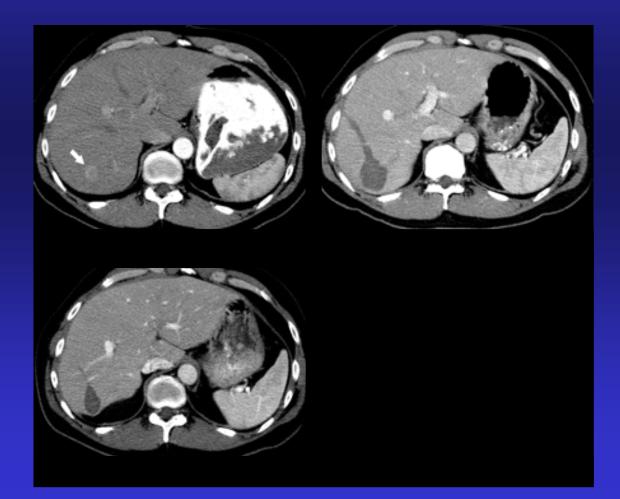

"It has been clearly documented that tumor-free resection margins of less than 1 cm are directly related to increased local hepatic tumor recurrence rate and decreased overall patient survival"

Drawback of Laser Ablation with multifiber technique ?

The apparent complexity of the procedure is paid off by:

- Small caliber of the needles
- The use of single skin entry port under US guidance
- Easy intercostal approch and control over all needles
- Possibility of changing the fibers array adapting it to lesion shape
- Finally, increased accuracy from a statistical perspective.....

RadioFrequency Ablation



RadioFrequency Ablation

• Despite the large use of this ablation technique for liver cancer and liver metastases there are limited reports about its use on hepatic metastases from NETs

Eren Berber -World J Surg 2002; 26:985-990 Gillams A -Abdom Imaging 2005; 30:435-441 Henn AR-AJR Am J Roentgenol 2003;181:1005-1010

RadioFrequency Ablation (curative ablation)

RadioFrequency Ablation (palliative ablation)

RadioFrequency Ablation

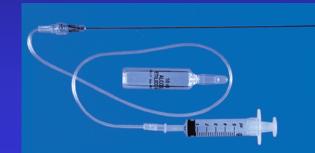
- In a large majority the intent of the treatment was palliative
- Complete or significant symptom relief has been reported in 70-80% of patients
- No mortality is reported
- Complications were observed in less than 12% of cases

Cryoablation "the iceball"

- Large-diameter applicators frequently requiring intraoperative settings
- Higher rates of complications for large liver tumor especially hemorrhage

Shafir M Am J Surg 1996; 171:27-31 Cozzi PJ Cancer 1995;76:501-509 Sheen AJ Br J Surg 2002;89:1396-1401

Cryoablation and "the iceball"


- More recently smaller caliber applicators has become available allowing safer percutaneous approach
- One advantage of cryoablation like Laser ablation is MRI compatibility that allows a real time monitoring of the ablated area

Percutaneous Ethanol Ablation

- Considered the reference treatment for HCCs, PEI has been essentially replaced by other ablation techniques
- In fact PEI demonstrated reduced efficacy on liver metastases
- Today its use is limited to particular conditions (lesion adjacent to vital structures, lesion in difficult location or close to the central bile ducts)

Livraghi T Radiology 1991;179:709-712 Atwell TD Cardiovasc Intervent Radiol 2005;28:409-421 Livraghi T Radiology 1999;210:655-661 Lencioni R Radiology 2003;228:235-240

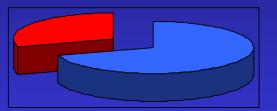
Ablation Therapies: results

- Local control for lesion smaller than 3.5 cm is reported in 96% of cases
- Are safe and efficient with only minor complications
- Are repeatable
- May be performed percutaneously and intraoperatively; this may expand the indications for liver resection.

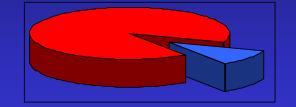
Ablation Therapies: Take-home points

- In the case of small liver metastases
 Percutaneous Ablation Techniques (PATs) are expected to obtain results similar to curative liver resection probably with lower morbidity and mortality
- Percutaneous treatments can be preferred to surgery for cytoreduction with some exemption

Vascular Liver Directed Therapies


Vascular Therapies

Hepatic artery ligation Intraarterial bland embolization TranscatheterArterialChemoEmbolization Selective Internal Radiation Therapy Drugs-Eluting-beads

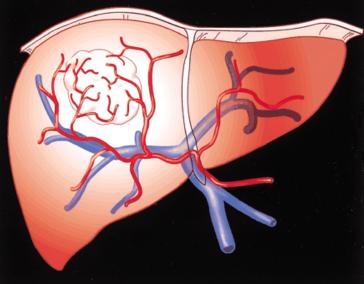

Rational for vascular Therapies

• Liver vascular supply depends on portal vein (70%) and hepatic artery (30%)

• Carcinoid mets vascularity originates mainly from hepatic artery (90%)

portal vein hepatic artery

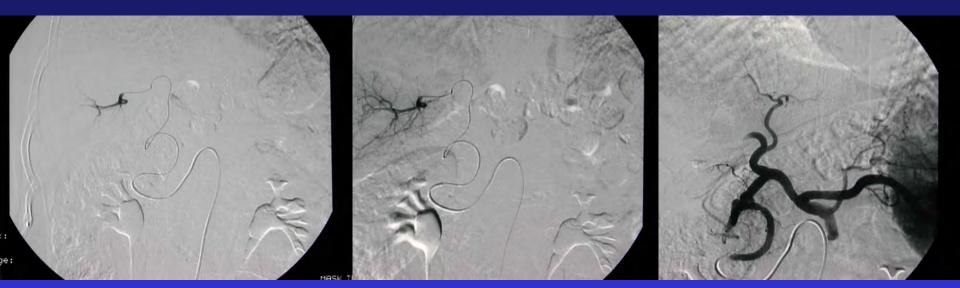
Liver vascular supply


NETs metastases vascular supply

Rational for vascular Therapies

 Several reports have established that induction of tumor ischemia can reduce hormone levels, palliate symptoms and reduce tumor burden

Vascular Therapies: drawbacks


- Collateralization of arterial supply
- Variable arterial anatomy
- Increase of tumor aggressiveness (upregulation of angioneogenesis factors ?)
- Vessel stricture or dissection preventing further treatments

Vascular Therapies: drawbacks Variable arterial anatomy

Rational for TACE over TAE

- Increased efficacy of local delivered chemotherapy (increased concentration and exposure time)
- Enhanced biological effects of chemotherapy by hypoxia (doxorubicin, Mitomicin C, Streptozocin)

TACE over TAE: evidence based?

- It is unclear whether chemoembolization offers any therapeutic advantage over bland embolization
- No consensus on which chemotherapeutic agent or association have to be used
- There are some evidences that TACE obtains better results on mets from islet cell tumor

TACE and TAE: indications

• Symptoms related to hormonal excess

• Symptoms related to tumor bulk

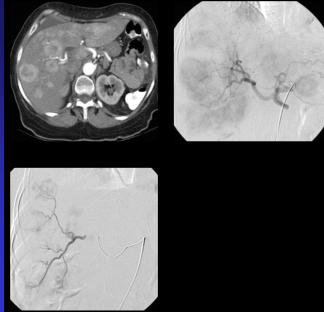
• Rapid progression of liver disease

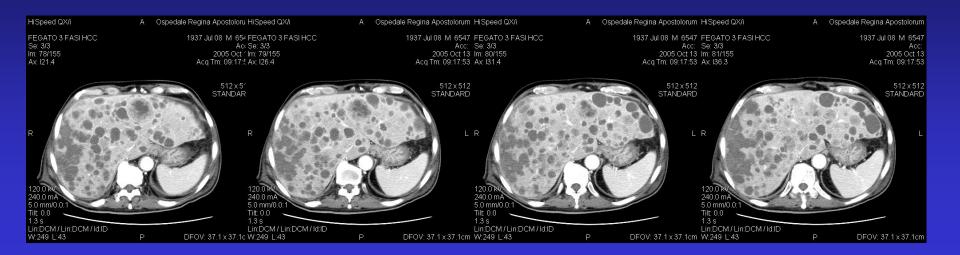
TACE and TAE: When to perform it?

- Some authors advocate an early use of TACE
- TACE performed before systemic treatment (IFN) can enhance tumor response (RR 86% vs 42%)
- "Late" embolization is recognized to be effective

Hanssen LE Acta Oncol 1989;28:439-443 Eriksson BK Cancer 1998;83:2293-2301

TACE and TAE: What's the maximum liver involvement admitted ?

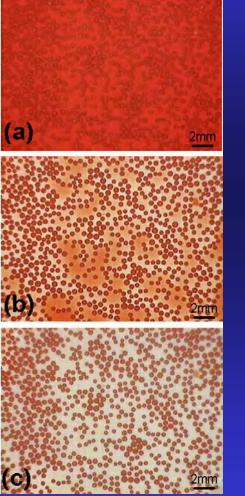

 A liver involvement > 50% has been used as exclusion criteria in many reports


TACE and TAE: What's the maximum liver involvement admitted

- High mortality rate is reported for patients with >50% liver involvement
- Radiologic response rate is greater in patients with liver involvement <50%

TACE and TAE: how much of the liver should be embolized?

- Embolization of the whole liver in a single session should be avoided
- To avoid liver failure in patients with extensive disease (>75%) only a small portion of liver lobe should be embolized during each session

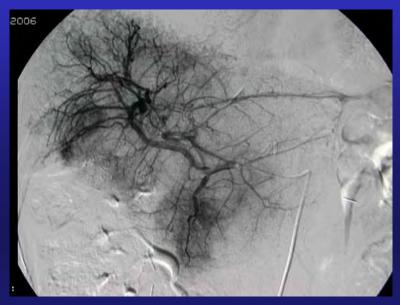

TACE and TAE: results

- Few studies with small number of patients are available from the last years literature
- Reported results are variable
- Reported OS 83% at 5 years to 58% at 10 years
- Relief of symptoms for 4-18 months is reported

TACE and TAE: complications

• Despite selective embolization there may occur:

a) carcinoid crisis or other symptoms of acute hormone release (11-12%)
b) liver failure (4% mortality)
c) tumor lysis syndrome (postembolic syndrome) in 86% of cases Transcatheter Arterial ChemoEmbolization (TACE) with Drug Eluting Beads (Precision TACE)


- It consists of injecting drug loaded beads in the hepatic vasculature
- It represents an evolution of standard TACE
- drug elution is controlled and sustained unlike the rapid separation of the drug from lipiodol

Loading of 300–500-µm beads with 25 mg/mL doxorubicin at 1 minute (a), 10 minutes (b), and 20 minutes (c).

Transcatheter Arterial ChemoEmbolization (TACE) with Drug Eluting Beads (Precision TACE)

Selective Internal Radiation Therapy SIRT

- Consists of injecting 90yttrium loaded glass or resin microsphere (20-40 mµ) in the hepatic vascular bed
- ⁹⁰Yttrium is a pure high energy β emitter (0.9367 MeV) with a mean tissue
 penetration of 2.5 mm.
- So the microspheres preferentially entrapped in hepatic metastases irradiate and destroy the surrounding cells

SIRT: possible advantages vs TACE

- The treatment produce minimal or bland embolization (↑ O² tension increase the efficacy !!!!!)
- Large portion or the entire liver can be treated in a single session with a superselective approaches
- Acute and subacute toxicity appear to be more tolerable than for other hepatic embolization procedures
- Less arterial endothelium toxicity

SIRT: possible disadvantages vs TACE

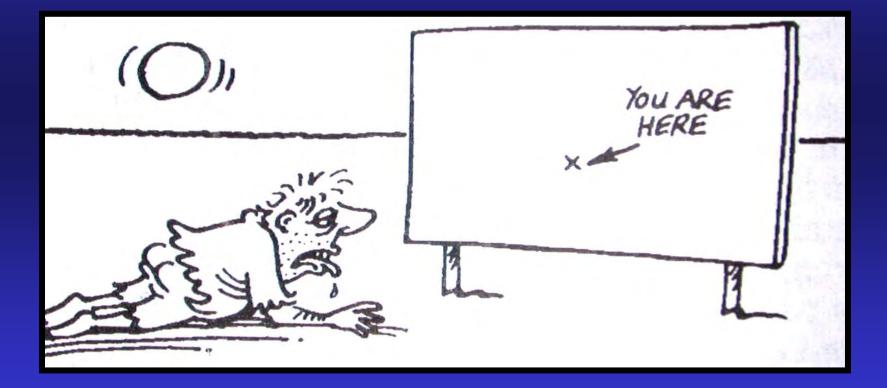
- The introduction of microsphere into the vasculature of organs other than liver can produce chronic pain, ulceration or bleeding
- Extrahepatic shunting needs to be identified through the injection of Tc-99m MAA into the hepatic artery
- Coiling of collaterals often required
- Hepatic fibrosis

Liver Directed Therapies as a bridge therapy to curative liver resection

- Tumor ablation and/or embolization can be used to improve performance status before resection
- Combined hepatic artery and portal vein embolization can increase number of patients amenable to extended liver resection
- Synchronous and asynchronous curative resection and curative ablation can be used in the same patient

Minimally Invasive Therapies for NETs metastatic to the liver: take home points

• Data suggest that aggressive management of neuroendocrine hepatic metastases does improve Survival and life quality


• Minimally Invasive Treatments increase the patient population eligible for this strategy

• Patients with more than 50% liver involvement may not benefit from an aggressive approach.

Minimally Invasive Therapies for NETs metastatic to the liver: future directions

- Eluting beads with new drugs
- SIRT associated with radiosensitizing chemotherapy
- Laser Ablation with sensitizing nanoparticles
- Combination of novel molecular targeted therapies with liver directed therapies

The End

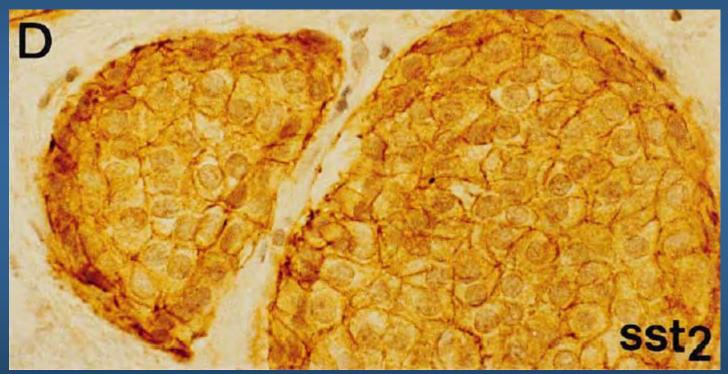
6th AME National Meeting Italian Association of Clinical Endocrinologists

3 rdJoint Meeting with AACE

American Association of Clinical Endocrinologist

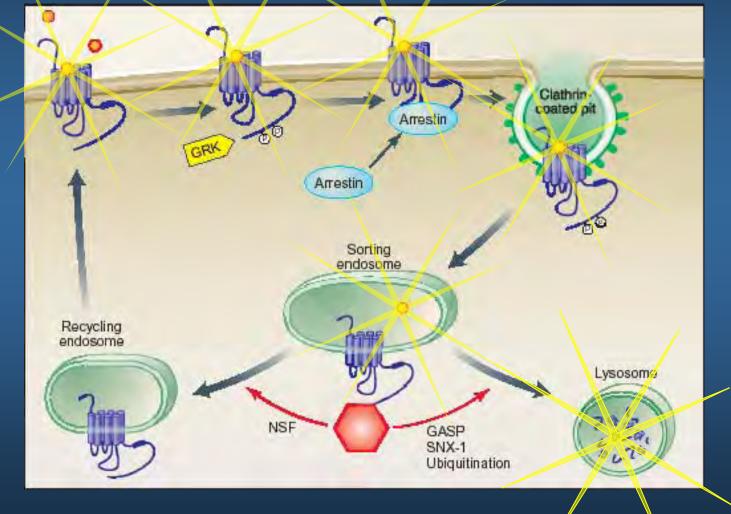
NET: treatment of persistent disease

Receptor radionuclide therapy


Lisa Bodei European Institute of Oncology Milano, Italy

Update in Clinical Endocrinology

Verona, ITALY October 27-29, 2006

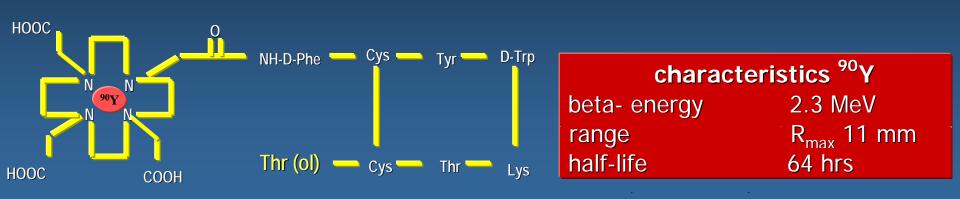

Peptide therapy: rationale basis receptor over-expression

IHC for sst2 in human gastrinoma

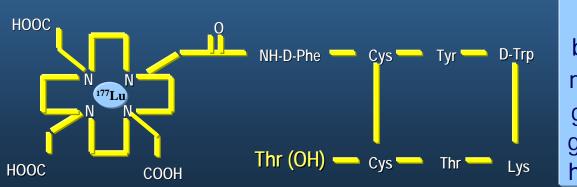
Hofland LJ et al. JCE&M 1999

Peptide therapy: rationale basis radioligand binding

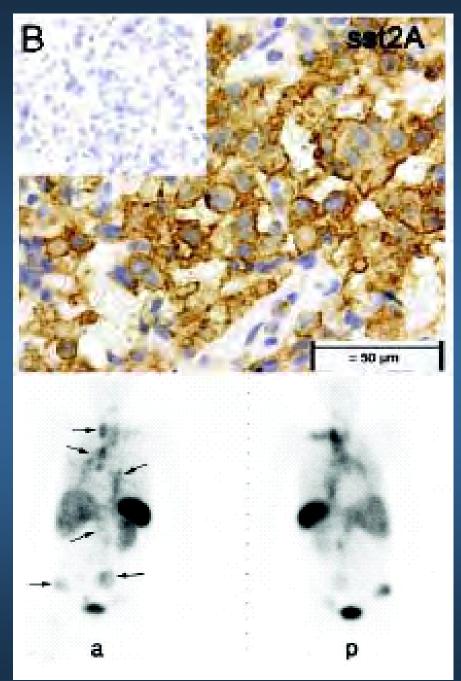
Adapted from Gray JA and Roth BL, Science 2002


Current peptides

Peptide receptor	Radioligands used in humans for therapy	Radioligands in development		
Somatostatin sst2 sst2, sst5	¹¹¹ In-DTPAOC ⁹⁰ Y-DOTATOC ¹⁷⁷ Lu-DOTATATE ⁹⁰ Y-DOTA-lanreotide	Carbohydrated derivatives and other biodistribution modifiers		
sst2, sst3, sst5 sst2, sst3, sst5	T-DOTA-latileolide	DOTANOC DOTABOC DOTANOCate DOTABOCate		
Bombesin GRP-R	177Lu-BNN8 analog	TETA-octreotide Bombesin analogs, including BBN8 analog, DOTA-[Lys ³]bombesin, and DOTA-PEG-BN(7-14)		
Cholecystokinin CCK2 Oxytocin		Minigastrin; CCK analog DOTALVT		

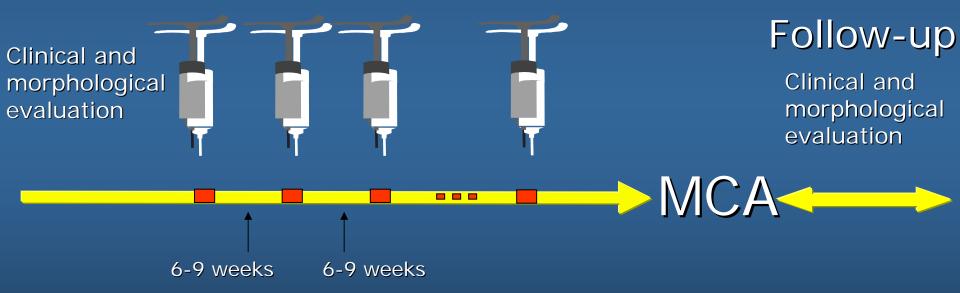

PRRT with SSA

Radiopeptides


⁹⁰Y-DOTATOC

¹⁷⁷Lu-DOTATATE

characteristics ¹⁷⁷ Lu						
beta- energy	0.5 MeV					
ange	R _{max} 2 mm					
gamma 1 energy	113 KeV (6%)					
gamma 2 energy	208 KeV (11%)					
nalf-life	6.7 days					

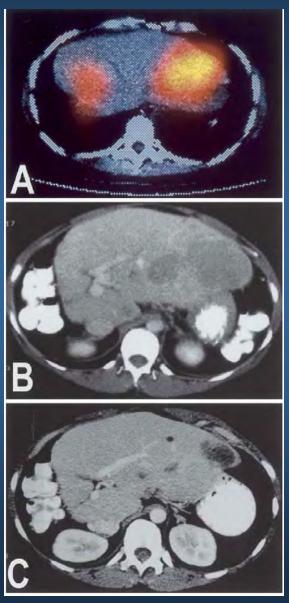

Which tumors to be treated

High receptor density

Mundschenk J et al. JCE&M 2003

How PRRT is performed

Systemic administration



General results in GEP tumors: [⁹⁰Y-DOTA⁰,Tyr³]-octreotide

		No. of	Tumor response					
Center (reference)	Ligand	patients	CR*	PR*	MR⁺	SD*	PD*	$CR + PR^{\dagger}$
Rotterdam (2)	[¹¹¹ In-DTPA ⁰]octreotide	26	0	0	5 (19)	11 (42)	10 (38)	0
New Orleans (3)	[¹¹¹ In-DTPA ⁰]octreotide	26	0	2 (8)	NA	21 (81)	3 (12)	8
Milan (10)	[⁹⁰ Y-DOTA ⁰ , Tyr ³]octreotide	21	0	6 (29)	NA	11 (52)	4 (19)	29
Basel (5,6)	[90Y-DOTA ⁰ , Tyr ³]octreotide	74	3 (4)	15 (20)	NA	48 (65)	8 (11)	24
Basel (7)	[90Y-DOTA ⁰ , Tyr ³]octreotide	33	2 (6)	9 (27)	NA	19 (57)	3 (9)	33
Rotterdam (11)	[90Y-DOTA ⁰ , Tyr ³]octreotide	54	0	4 (7)	7 (13)	33 (61)	10 (19)	7
Rotterdam (18)	[177Lu-DOTA ⁰ , Tyr3]octreotate	ə 76	1 (1)	22 (29)	9 (12)	30 (39)	14 (18)	30

Kwekkeboom DJ et al. J Nucl Med 2005

[⁹⁰Y-DOTA⁰,Tyr³]-octreotide:

response

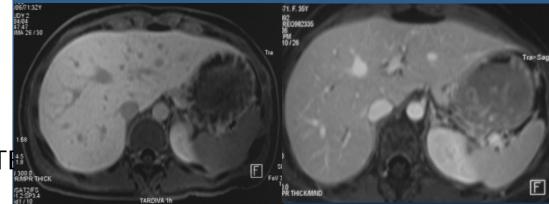
Bodei L et al. Eur J Nucl Med 2003

[¹⁷⁷Lu-DOTA⁰,Tyr³]-octreotate: results in GEP tumors

	CR	PR	MR	SD	PD	Total Patients
Tumor Type	%	%	%	%	%	(No.)
Carcinoid	8	20	20	42	18	66
NE pancreas	9	22	22	34	13	32
NE unknown origin	-	35	12	24	29	17
Gastrinoma	-	63	25	12	÷	8
Insulinoma	-	50		-	50	2
Total	2	26	19	35	18	125

Kwekkeboom DJ et al, J Clin Oncol 2005

[¹⁷⁷Lu-DOTA⁰, Tyr³]-octreotate objective response Arteriografia basale



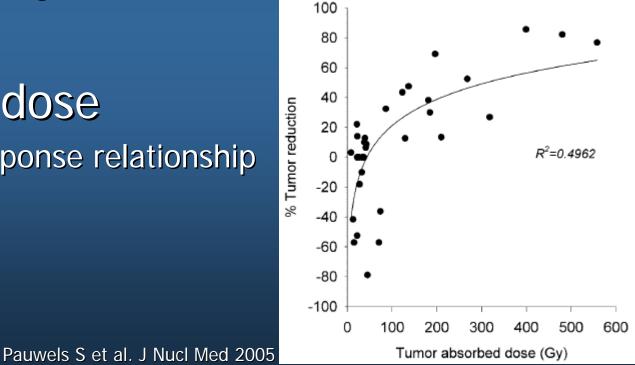
RM basale

RM finale

¹⁷⁷Lu-DOTATAT

finale

¹⁷⁷Lu-DOTATATI basale


IEO S189/104

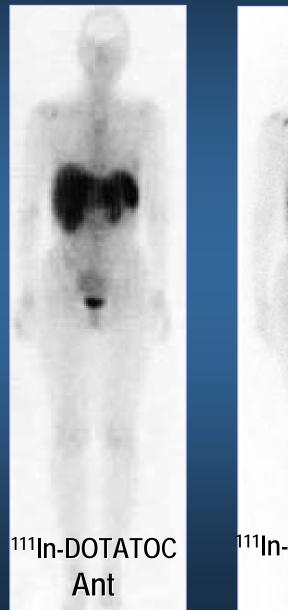
EFFICACY: parameters involved

Radiosensitivity:

- growth pattern
- DNA repair
- Radioactivity concentration on tumor

absorbed dose Dose-response relationship

Radioactivity amount in tumor: T/B ratio

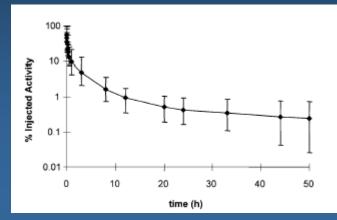

receptor affinity of radiopeptide

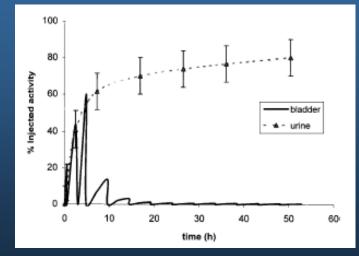
Peptides	hsst 1	hsst 2	hsst 3	hsst 4	hsst 5
SS-28	5.2±0.3 (19)	2.7±0.3 (19)	7.7±0.9 (15)	5.6±0.4 (19)	4.0±0.3 (19)
Octreotide	>10,000 (5)	2.0±0.7 (5)	187±55 (3)	>1,000 (4)	22±6 (5)
CH288	23±2 (3)	>10,000 (4)	>1,000 (3)	>10,000 (3)	>1,000 (4)
DTPA-octreotide	>10,000 (6)	12±2 (5)	376±84 (5)	>1,000 (5)	299±50 (6)
In-DTPA-octreotide	>10,000 (5)	22±3.6 (5)	182±13 (5)	>1,000 (5)	237±52 (5)
DOTA-TOC	>10,000 (7)	14±2.6 (6)	880±324 (4)	>1,000 (6)	393±84 (6)
Y-DOTA-TOC	>10,000 (4)	11±1.7 (6)	389±135 (5)	>10,000 (5)	114±29(5)
DOTA-LAN	>10,000 (7)	26±3.4 (6)	771±229 (6)	>10,000 (4)	73±12 (6)
Y-DOTA-LAN	>10,000 (3)	23±5 (4)	290±105 (4)	>10,000 (4)	16±3.4 (4)
DOTA-VAP	>10,000 (3)	29±7 (4)	419±104 (4)	743±190 (3)	80±19 (4)
Y-DOTA-VAP	>10,000 (4)	$12\pm 2(5)$	102±25 (5)	778±225 (5)	20±2.3 (5)
DOTA-OC	>10,000 (3)	$14\pm 3(4)$	27±9 (4)	>1,000 (4)	103±39 (3)
Y-DOTA-OC	>10,000 (5)	20±2 (5)	27±8 (5)	>10,000 (4)	57±22 (4)
Ga-DOTA-TOC	>10,000 (6)	2.5±0.5 (7)	613 ±140 (7)	>1,000 (6)	73±21 (6)
Ga-DOTA-OC	>10,000 (3)	7.3±1.9 (4)	120±45 (4)	>1,000 (3)	60±14 (4)
DTPA-[Tyr3]-octreotate	>10,000 (4)	3.9±1 (4)	>10,000 (4)	>1,000 (4)	>1,000 (4)
In-DTPA-[Tyr3]-octreotate	>10,000 (3)	$1.3\pm0.2(3)$	>10,000 (3)	433±16 (3)	>1,000(3)
DOTA-[Tyr ³]-octreotate	>10,000 (3)	1.5±0.4 (3)	>1,000 (3)	453±176 (3)	547±160 (3)
Y-DOTA-[Tyr3]-octreotate	>10,000 (3)	$1.6\pm0.4(3)$	>1,000 (3)	523±239 (3)	$187\pm50(3)$
Ga-DOTA-[Tyr3]-octreotate	>10,000 (3)	0.2±0.04 (3)	>1,000 (3)	300±140 (3)	377±18 (3)

All values are IC₅₀±SEM in nM. The number of experiments is in parentheses

Reubi JC et al. Eur J Nucl Med 2000

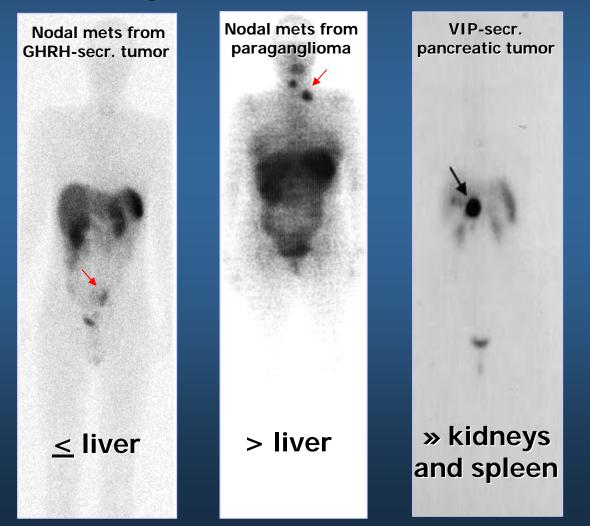
DOTATOC vs DOTATATE





Radioactivity amount in tumour: T/B ratio

Pharmacokinetics:
 – rapid plasma clearance:


- excretion/catabolism by the kidney:

Cremonesi M et al. Eur J Nucl Med 1999

Radioactivity amount in tumour: T/B ratio

receptor density on tumour and normal organs

Absorbed dose to the tumor: tumor dosimetry

Radiopharmaceutical	Tumor mass (g)	Absorbed dose (mGy/MBq)	Reference
90Y-DOTATOC	9 lesions (mass not specified)	Range = 2.4-41.7 [†]	(16)
	23 lesions; range = 2-115 g	Range = 1.4-31.0 [†]	(15)
	Mass not specified	Range = 2.1-29.5 [‡]	(23)
¹⁷⁷ Lu-DOTATATE	1 g*	37.9	(30)
	10 g*	3.9	(30)

Cremonesi M et al. J Nucl Med 2006

VIP-secreting pancreatic neuroendocrine carcinoma

After ⁹⁰Y-DOTATOC Basal (13.9 GBq) a C 13 gin "h °d

Bodei L, Eur J Nucl Med Mol Imaging 2004

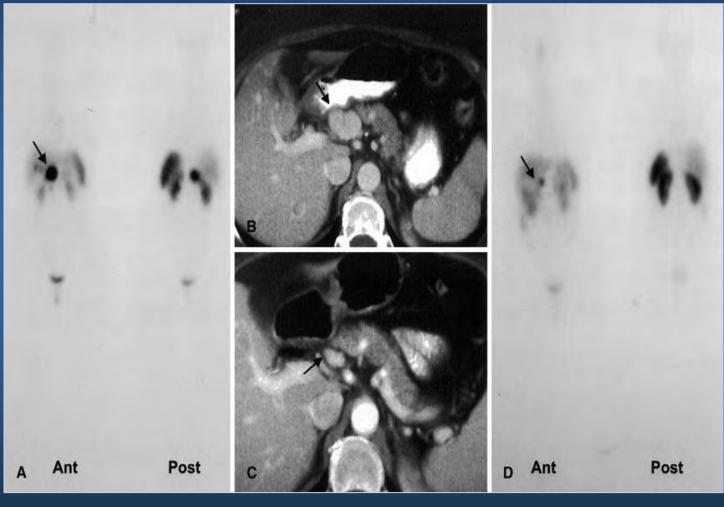
PRRT: predictive factors Progression

60 90. 80. ** 50 70 Progression (%) 60 Remission (%) 40 50 30 40 30 20 20 10 10 0 Baseline Progressive ^LUptake OctreoScan Weight Loss Bone Mets Tumor Mass Gastrinoma KPS = 70 Liver Mets Gaselline Policies 0 totate Octoocan NejOht COSS Bone Weis Tumor Megs 405 × 10 Liver Mels Geotinona -Kwekkeboom DJ et al, J Clin Oncol 2005

Response

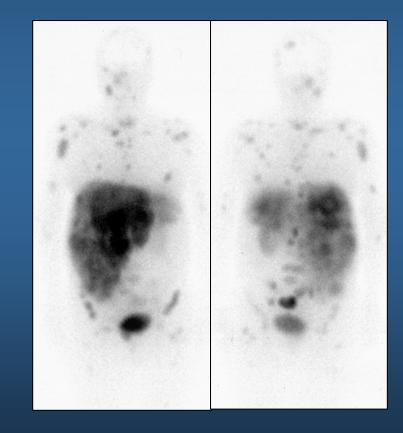
IEO S189/104: ¹⁷⁷Lu-DOTATATE

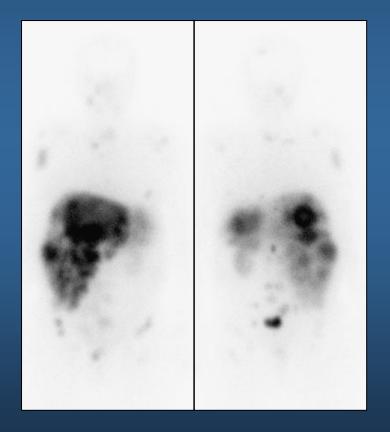
February 2005



August 2004

November 2004


Favourable factors: OctreoScan uptake


basal Paganelli G, Eur J Nucl Med 2001 after ⁹⁰Y-DOTATOC

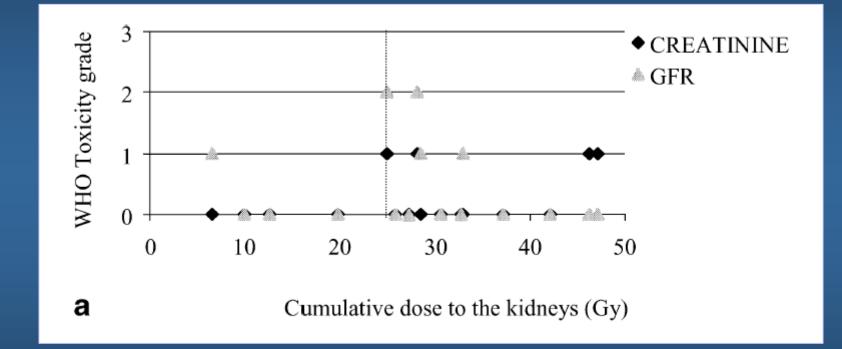
Unfavourable factors: low PS and extensive disease

October 2004

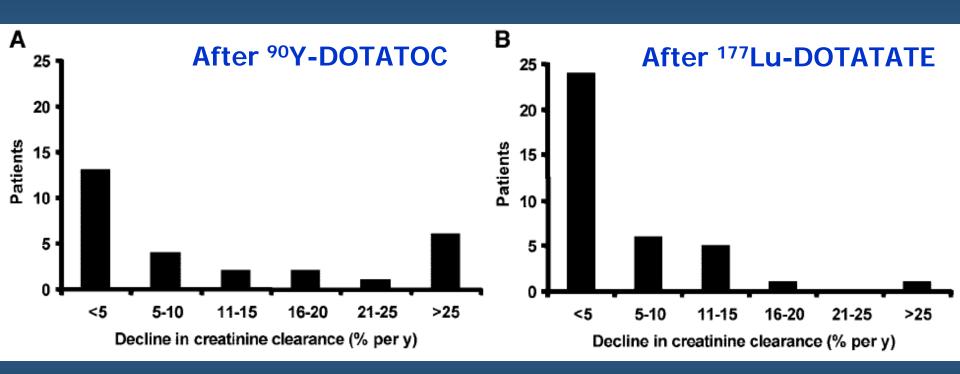
July 2004

IEO S189/104: ¹⁷⁷Lu-DOTATATE

SAFETY: KIDNEY TOXICITY


KIDNEY TOXICITY

			Toxicity			
		No. of	Grade 3 or 4 hematologic*			
Center (reference)	Ligand	patients	Platelets	Hb	WBC	Other [†]
Rotterdam (2)	[¹¹¹ In-DTPA ⁰]octreotide	50	10	15	2	3 AML or MDS
New Orleans (3)	[¹¹¹ In-DTPA ⁰]octreotide	27	7	11	7	3 liver, 1 renal
Milan (10)	[⁹⁰ Y-DOTA ⁰ , Tyr ³]octreotide	40	7	3	7	
Basel (4)	[⁹⁰ Y-DOTA ⁰ , Tyr ³]octreotide	29	3	7	0	4 renal‡
Basel (6)	[⁹⁰ Y-DOTA ⁰ , Tyr ³]octreotide	39	0	3	0	1 renal
Rotterdam (11)	190Y-DOTA0. Tvr3loctreotide	60	12	8	13	1 MDS. 1 liver. renal
Rotterdam (18)	[¹⁷⁷ Lu-DOTA ⁰ , Tyr ³]octreotate	200	3	1	2	1 MDS, 1 renal

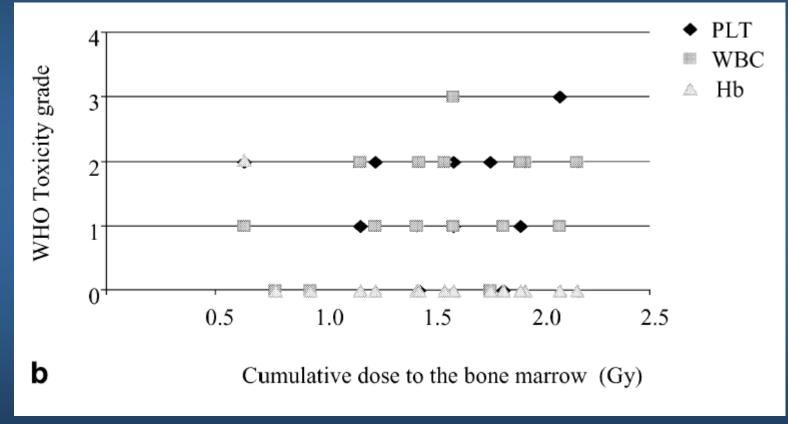


Renal toxicity and absorbed dose

Creatinine clearance decline after PRRT

SAFETY: BONE MARROW TOXICITY

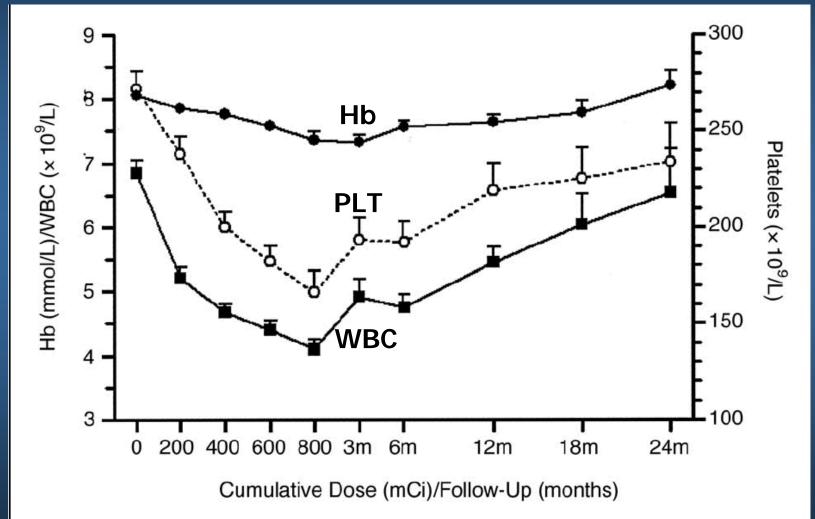
BONE MARROW TOXICITY


		_	Toxicity				
		No. of	Grade 3 o	Grade 3 or 4 hematologic*			
Center (reference)	Ligand	patients	Platelets	Hb	WBC	Other [†]	
Rotterdam (2)	[111In-DTPA ⁰]octreotide	50	10	15	2	3 AML or MDS	
New Orleans (3)	[111In-DTPA0]octreotide	27	7	11	7	3 liver, 1 renal	
Milan (10)	[90Y-DOTA ⁰ , Tyr ³]octreotide	40	7	3	7		
Basel (4)	[90Y-DOTA0, Tyr3]octreotide	29	3	7	0	4 renal‡	
Basel (6)	[90Y-DOTA0, Tyr3]octreotide	39	0	3	0	1 renal	
Rotterdam (11)	[90Y-DOTA0, Tyr3]octreotide	60	12	8	13	1 MDS, 1 liver, 1 renal	
Rotterdam (18)	[177Lu-DOTA ⁰ , Tyr3]octreotate	200	3	1	2	1 MDS, 1 renal	
	tage of patients. Hb = hemoglobin;						

[†]Reported as number of patients with indicated type of toxicity. AM <u>- acute myeloid leukemia</u>

[‡]No amino acid infusion in half of patients.

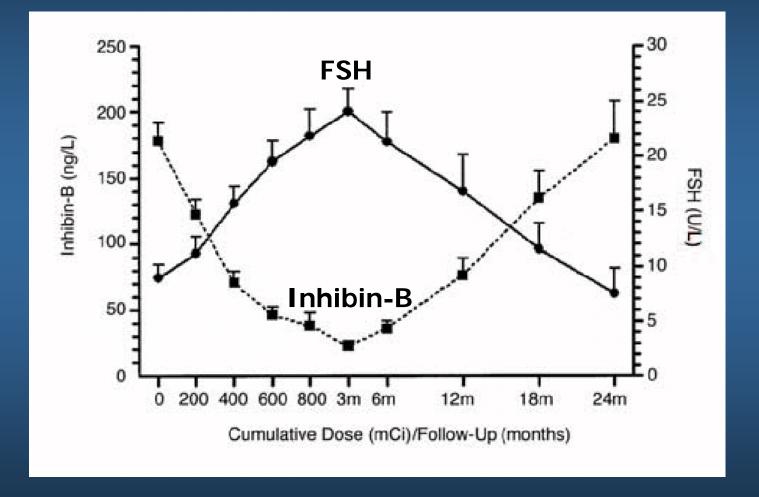
Bone marrow toxicity and absorbed dose


After ⁹⁰Y-DOTATOC

Bodei L et al, Eur J Nucl Med 2004

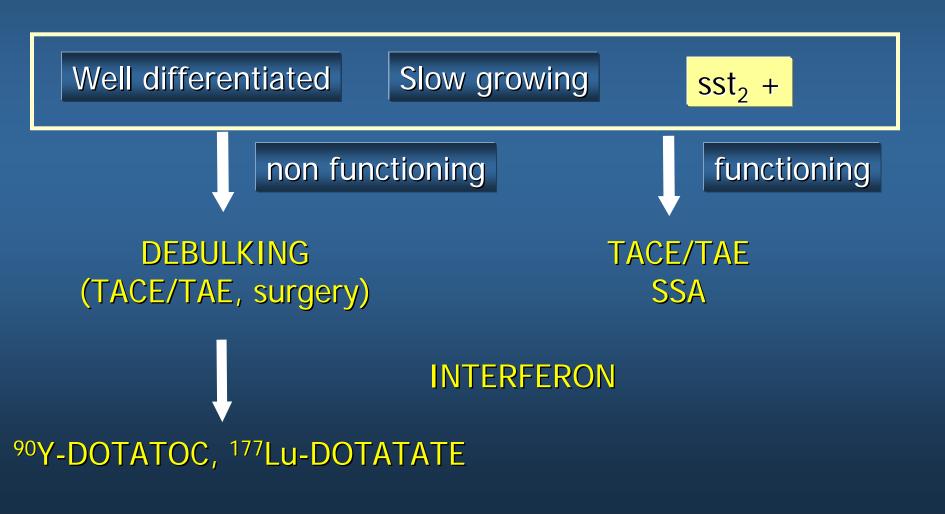
Bone marrow toxicity and absorbed dose

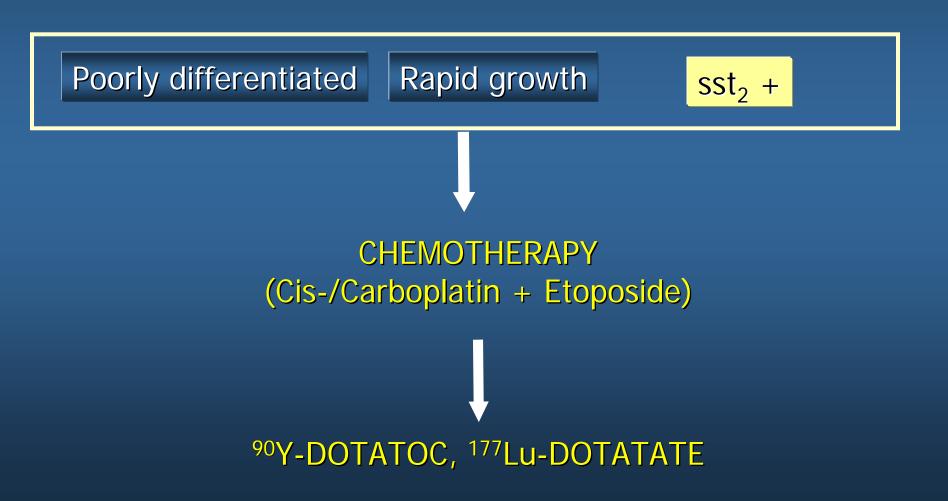
After ¹⁷⁷Lu-DOTATATE


SAFETY: OTHER EFFECTS

Exacerbation of syndromes in functioning tumors

Davì MV, Bodei L et al. J Endocrinol Invest 2006


FERTILITY


Kwekkeboom DJ al. J Clin Oncol Invest 2005

PRRT vs other therapies

When should PRRT be proposed?

When should PRRT be proposed?

WHAT IS LACKING

UNIFORM STUDIES

- phase II studies on single classes of diseases
- comparison studies between ⁹⁰Y and ¹⁷⁷Lu

- GMP CENTRALIZED PRODUCTION AND DELIVERY OF RADIOPEPTIDES
 - to overcome the difficulties of legislation in various countries on experimental studies
 - to pass from experimental to standardized therapy

European Institute of Oncology

 Nuclear Medicine: Giovanni Paganelli Lisa Bodei Demetrio Aricò Silvia M. Baio Mirco Bartolomei Marco Chinol Concetta De Cicco Chiara C. Grana Maribel Lopera Sierra Lauretta Marchetti Stefano Papi Paola Rocca Giovanni Tesoriere Laura Travaini Giuseppe Trifirò • Health Physics: Marta Cremonesi Mahila Ferrari • Radiology: Guido Bonomo Franco Orsi Medical Oncology: Filippo de Braud Nicola Fazio

Acknowledgements

• Surgery: Fabrizio Luca Endoscopy: Davide Ravizza Pathology: Giuseppe Pelosi Giuseppe Viale University of Basel: Helmut R Mäcke Our nurses: Gianni Bufi, Bouba Daou, Monica De Piano, Francesca Fassari, Mimmo Oliviero, Riccardo Perego. Our Technicians: • Maurizio Caracciolo, Maurizio Fiorenza, Domenico Militano, Daniele Paolucci, Piergiorgio Pede, Gennaro Prisco, Annalisa Rossi Scientific secretary: • Deborah Console

 Secretaries: Emanuela Giunta, Karina De Giovanni