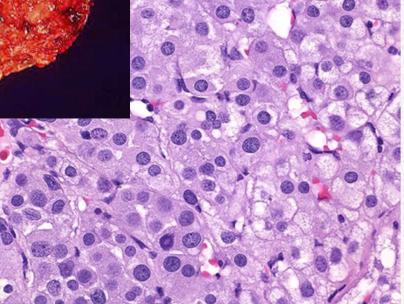

Quando l'oncologo ha bisogno dell'endocrinologo Topics

Tumori del surrene


Carcinoma della corteccia surrenalica

Incidenza 0,5-2/1.000.000/anno Picco bimodale in età pediatrica e tra la 4° e la 5° decade Rapporto maschi/femmine 1,5/1

Per lo piu' sporadico Li-Fraumeni MEN-1 Congenital adrenal hyperplasia Familial polyposi colon

Carcinoma della corteccia surrenalica: 60-65% funzionanti

- Cushing
- Virilizzazione
- Ferminizzazione
- Iperaldosteronismo

Adrenal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up $^{\scriptscriptstyle \dagger}$

∞ŏ Bernuti¹, E. Baudin², H. Gelderblom³, H. R. Haak⁴, F. Porpiglia⁵, M. Fassnacht⁶ Pentheroudakis⁷ on behalf of the ESMO Guidelines Working Group * Ä Ġ

Hormonal work-up Glucocorticoid excess (minimum 3 of 4 tests) Dexamethasone suppression test (1 mg, 23:00 h) Excretion of free urinary cortisol (24 h urine) Basal cortisol (serum) Basal ACTH (plasma) Sexual steroids and steroid precursors DHEA-S (serum) 17-OH-progesterone (serum) Androstenedione (serum) Testosterone (serum) 17-beta-estradiol (serum, only in nonand postmen pausal women) 24-h urine steroid metabolite ex-Mineralocorticoid excess Potassium (serum) Aldosterone/renin ration in patier rterial hypertension and/or hypokalemia) Catecholamine exce Normetaneph de etanephrin d methoxytyramine (plasma) ionated a cphrine excretion (24 h urine) Alternaticely: Imaging of abdon CT of M nd CT thorax igraphy (h) suspecting skeletal metastases) Ba evti m DOTA-TATE-PET, Dopa/Dopamine PET or MIBG scint Inromocytoma is proved FDG-PET in

Adapted bing to the recommendation of the ACC working group of the fullow. Network for the Study of Adrenal Tumors (www.ensat.org/acc.hl), May 2005.

In patients with a clearly established diagnosis of an ACC, one can skip the workup on catecholamine excess (and conversely for established pheochromocytoma, one can skip the steroid analysis). DHEA, dehydroepiandrosterone.

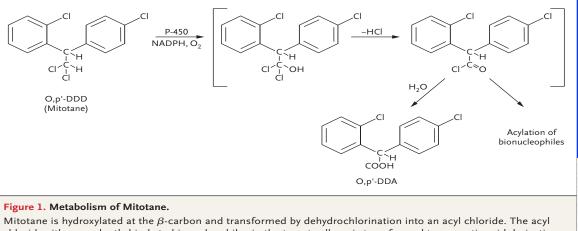

Carcinoma corticosurrenalico : chirurgia

TABLE 7. Adrenocortical carcinoma: survival rates from reported series

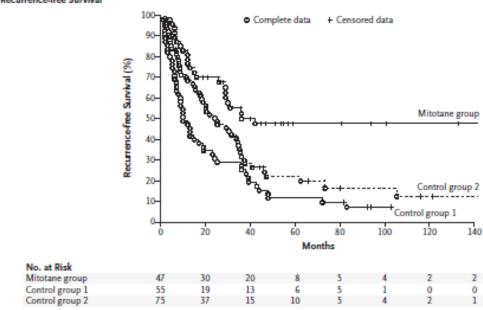
					5-y Survival (9	(6)
Study	Institution/group	Year	n	Overall	Complete resection	Incomplete resection
Soreide et al. ⁶	Norway	1991	99	16	62	0
Icard et al.16	French Endocrine Surgeons	1992	156	34	42	0
Zografos et al.17	Roswell Park	1994	53	19	38	0
Haak et al.18	Holland	1995	96	27	49	9
Crucitti et al.19	ACC Italian Registry	1996	129	35	48	7

ACC, adrenal cortical carcinoma.

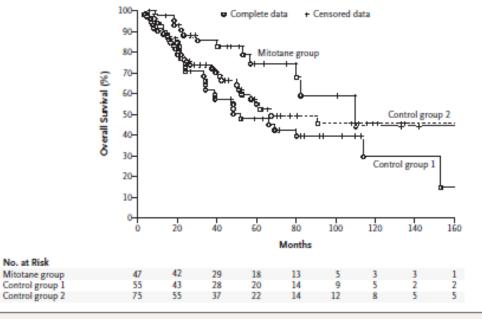
Chemioterapia : mitotane

chloride either covalently binds to bionucleophiles in the target cells or is transformed to an acetic acid derivative for excretion.

Table 5. Effect of mitotane treatment on adrenal cortical cancer.


Study	Year	Institution	No.	Result/conclusion
Kasperlik-Zaluska [72]	1995	Poland	36	Suggested benefit of adjuvant mitotane
Haak [59]	1994	Netherlands	62	Response rate 21% (6/29) in setting of measurable disease
Vassilopoulou-Sellin [73]	1993	MDACC	13	No effect on survival
Pommier [26]	1992	MSKCC	29	PR 24%
Luton [74]	1990	France	37	PR 22%, no effect on survival
Venkatesh [75]	1989	MDACC	72	Stable disease or PR 29%
Karakousis [76]	1985	Roswell Park	10	Stable disease or response 40% ($n = 4$)
Van Slooten [77]	1984	Netherlands	34	Serum levels > 14 μ g/ml associated with improved survival
Henley [61]	1983	Mayo Clinic	24	PR 4% $(n = 1)$

PR: partial response.


Table 3. Mitotane dose regimen, glucocorticoid, and mineralocorticoid supplementation, blood level monitoring, and dose adjustment according to toxicity and blood level monitoring

Mitotane dose regimen ^a	 Start with 1.5 g/d and increase dose within 4- After 3 weeks, adjust dosage according toleral Maximum dose 12 g/days, but most patients Target mitotane blood level 14-20 mg/l. Usin within 3 months 	bility and blood level (see bed do not tolerate >8 g/days	
Glucocorticoid and mineralocorticoid supplementation	 A total daily dose of 50 mg hydrocortisone (d more may be needed. Glucocorticoid replace) Fludrocortisone may be added depending renin activity 	ent is on the est with c to blood assure, ser up po	5 mg cortisone acetate and areful clinical assessment tassium levels, and plasma
Recommended blood monitoring during mitotane therapy	be extended (i.e. every w. s. Glutamate-Oxa acetata Transaminase (GOT) Campoutant ansferase (GGT). Ir it un bly evated without clinical us uc f semme), there is a risk of w. ail. c. s. H, fT3, fT4 every 3-4 on syroid ho dinical symptoms from yroidism	the presence of symptoms sugg), Low-Density Lipoprotein (I DL cholesterol consistently inc	G) should be tested in male gestive of mineralocorticoid LDL)), triglycerides every 3–
Plasma mitotane level	CNS (grade 2)/GI side effects (grade 3/4) Absent	Present	Grade 3/4 CNS side effects Present
<14 mg/l 14-20 mg/l >20 mg/l	Increase daily dose by 1 g ^b Maintain dose Reduce daily dose to 50%–75% of the most recent dose	Reduce daily dose by 1 g Reduce daily dose by 1.5 g Stop mitotane ^c	Stop mitotane ^c Stop mitotane ^c Stop mitotane ^c

A Recurrence-free Survival

Figure 1. Kaplan–Meier Estimates of Recurrence-fre	ee Survival and	Overall Survival.
--	-----------------	-------------------

Table 2. Predictive Factors for Recurrence-free Survival, According to Univariate and Multivariate Analyses.							
Variable	Univ	variate Analysis		Multiv	ariate Analysis	j¢	
	Hazard Ratio	95% CI	P Value	Hazard Ratio	95% CI	PValue	
Age†	0.98	0.96-0.99	<0.001	0.97	0.96-0.98	<0.001	
Sex‡	1.20	0.83-1.72	0.33	1.08	0.74-1.58	0.67	
Tumor stage			0.27			0.03	
1	1			1			
Ш	1.91	0.92-3.95		2.10	1.00-4.28		
ш	2.14	0.98-4.71		2.45	1.10-5.41		
IV	2.22	0.85-5.80		4.34	1.61-11.67		
Secreting turnor§	1.29	0.87-1.90	0.20				
Weiss score	0.96	0.61-1.50	0.85				
Study group							
Mitotane group	1		< 0.001	1		<0.001	
Control group 1	2.91	1.77-4.78		3.79	2.27-6.32		
Control group 2	1.97	1.21-3.20		2.93	1.74-4.94		

Adjuvant Mitotane Treatment for Adrenocortical Carcinoma

Massimo Terzolo, M.D., Alberto Angeli, M.D., Martin Fassnacht, M.D., Fulvia Daffara, M.D., Libuse Tauchmanova, M.D.,
Pier Antonio Conton, M.D., Ruth Rossetto, M.D., Lisa Buci, M.D.,
Paola Sperone, M.D., Erika Grossrubatscher, M.D., Giuseppe Reimondo, M.D., Enrico Bollito, M.D., Mauro Papotti, M.D., Wolfgang Saeger, M.D.,
Stefanie Hahner, M.D., Ann-Cathrin Koschker, M.D., Emanuela Arvat, M.D., Bruno Ambrosi, M.D., Paola Loli, M.D., Gaetano Lombardi, M.D.,
Massimo Mannelli, M.D., Paolo Bruzzi, M.D., Franco Mantero, M.D., Bruno Allolio, M.D., Luigi Dogliotti, M.D., and Alfredo Berruti, M.D.

N Engl J Med 2007;356:2372-80. Copyright © 2007 Massachusetts Medical Society.

Linee guida ESMO 2012

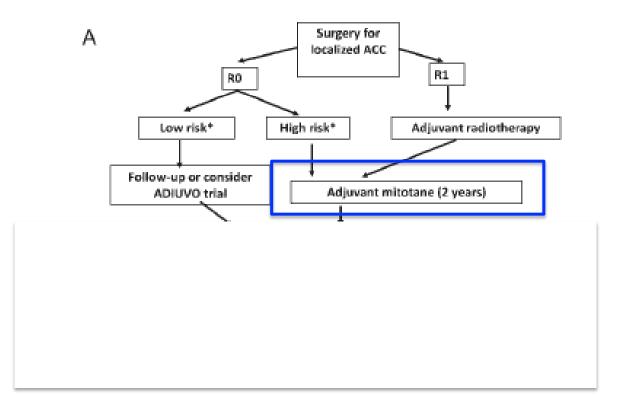


Figure 1 Algorithm on management according to stage, risk factors, and disease characteristics for adrenocortical carcinoma (ACC) (A) and pheochromocytoma (B). *Low-risk ACC is defined stage I–II and Ki67 expression in ≤10% of neoplastic cells, high-risk ACC: stage III or Ki67 expression in >10% of neoplastic cells.

Annals of Oncology 23 (Supplement 7): vii131-vii138, 2012 doi:10.1093/annonc/mds231

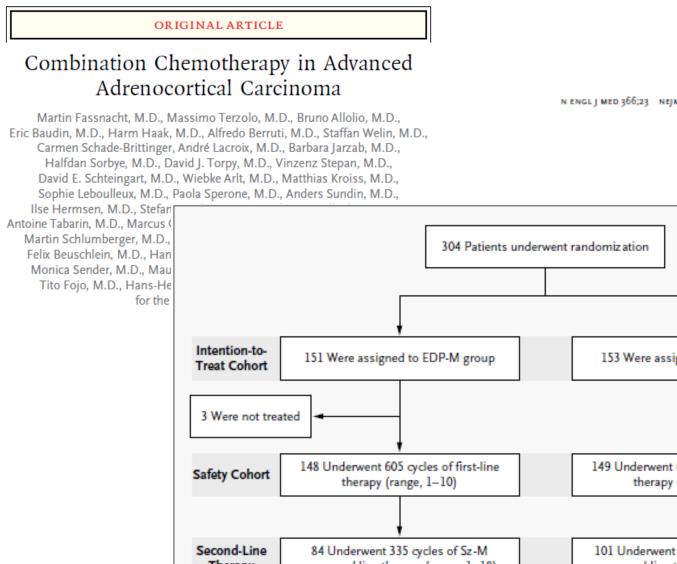
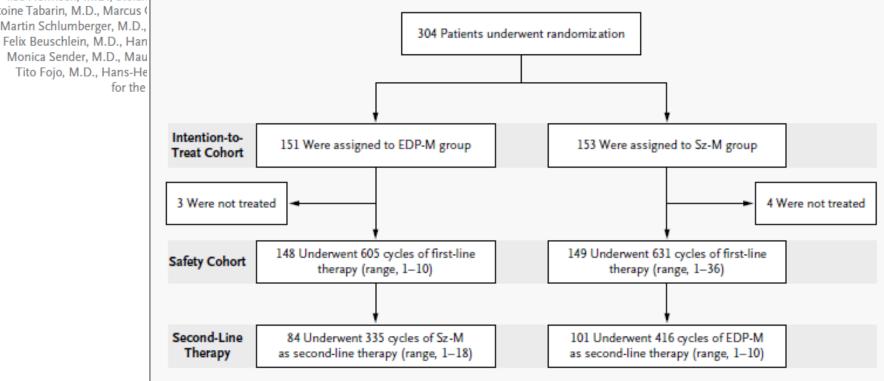
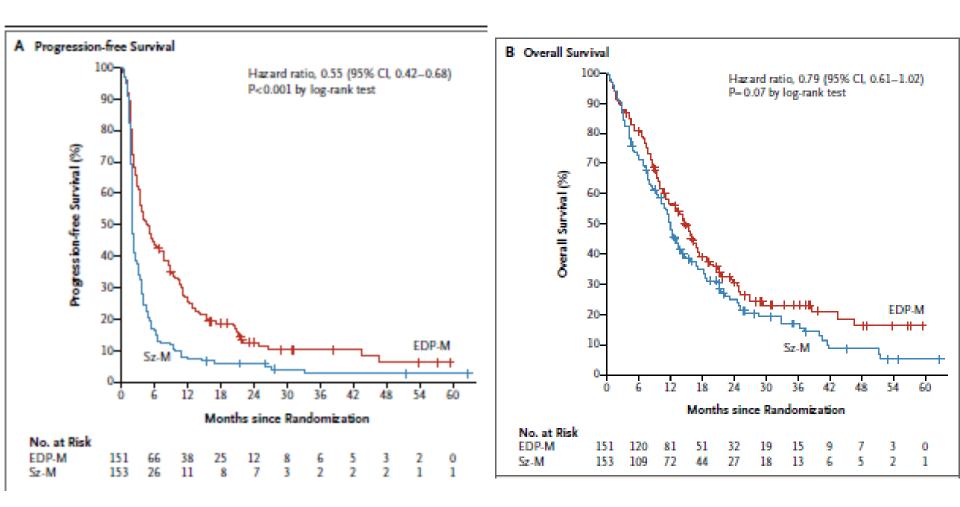

Chemioterapia : oltre il mitotane

Table 6. Effect of chemotherapy on adrenal cortical cancer.


Series	Year	Institution	Regimen	No.	Response
Williamson [83]	2000	SWOG	ECM ^a	45	PR 5
Abraham [84]	1999	NCI	MEDV	28	CR 1, PR 4
Berruti [85]	1998	Italy	MEDP	28	CR 2, PR 13
Zidan [86]	1996	Israel	EP^{b}	1	PR 1
Bukowski [87]	1993	SWOG	MP	37	PR 11
Berruti [88]	1992	Italy	EDP	2	PR 2
Schlumberger [89]	1991	France	DP5-FU	13	CR 1, PR 2
Hesketh [90]	1987	Boston University	EPB	4	CR 1, PR 1
Johnson [91]	1986	Vanderbilt	EC	2	PR 2

5-FU: 5-fluorouracil; B: bleomycin; CR: complete response; D: doxorubicin; E: etoposide; M: mitotane; NCI: National Cancer Institute; P: cisplatin; PR: partial response; SWOG: Southwest Oncology Group; V: vincristine.

^aMitotane given only after disease progression on EC and only to patients who had not received mitotane previously. ^bMitotane failure.



N ENGL | MED 366;23 NE[M.ORG |UNE 7, 2012

Figure 1. Enrollment and Treatment.

EDP-M denotes etoposide, doxorubicin, and cisplatin plus mitotane, and Sz-M streptozocin plus mitotane.

Table 3. Serious Adverse Events during First-Line Therapy.						
Event	EDP-M (N = 148)	Sz-M (N = 149)				
	no. of pat	ients (%)				
Any serious adverse event	86 (58.1)	62 (41.6)				
Adrenal insufficiency	5 (3.4)	1 (0.7)				
Bone marrow toxicity	17 (11.5)	3 (2.0)				
Cardiovascular or thromboembolic event	10 (6.8)	0				
Fatigue or general health deterioration	8 (5.4)	7 (4.7)				
Gastrointestinal disorder	6 (4.1)	12 (8.1)				
Impaired liver function	0	7 (4.7)				
Impaired renal function	1 (0.7)	6 (4.0)				
Infection	10 (6.8)	4 (2.7)				
Neurologic toxicity	5 (3.4)	4 (2.7)				
Respiratory disorder	9 (6.1)	5 (3.4)				
Other	15 (10.1)	13 (8.7)				

ESMO 2012

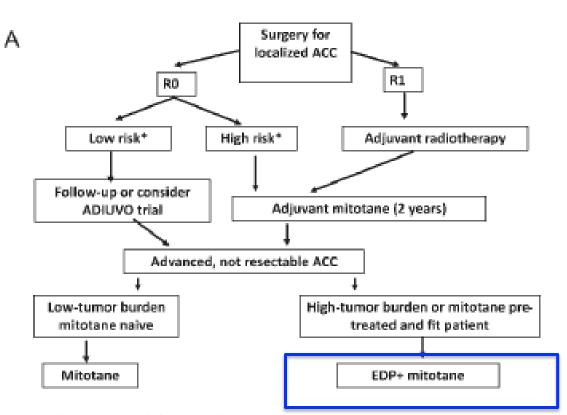


Figure 1 Algorithm on management according to stage, risk factors, and disease characteristics for adrenocortical carcinoma (ACC) (A) and pheochromocytoma (B). *Low-risk ACC is defined stage I–II and Ki67 expression in ≤10% of neoplastic cells, high-risk ACC: stage III or Ki67 expression in >10% of neoplastic cells.

Annals of Oncology 23 (Supplement 7): vii131-vii138, 2012 doi:10.1093/annonc/mds231 TABLE 4: Ongoing Clinical Trials that test the Target Therapies.

Study	Target	ID	Purpose	Status
Mitotane with or without <i>IMC-A12</i> in treating patients with recurrent, metastatic, or primary adrenocortical cancer that cannot be removed by surgery	IGF1R	NCT00778817	This randomized phase II trial compares the combination of mitotane and IMC-A12 with mitotane alone in the treatment of recurrent, metastatic, or primary adrenocortical cancer that cannot be removed by surgery	Recruiting
A study of OSI-906 in patients with locally advanced or metastatic adrenocortical carcinoma (GALACCTIC)	IGF1R	NCT00924989	A multicenter, randomized, double-blind, placebo-controlled, phase III study of single-agent OSI-906 in patients with locally advanced/metastatic adrenocortical carcinoma who received at least 1 but no more than 2 prior drug regimens	Ongoing not recruiting
Phase II trial of <i>ZD1839</i> (<i>Iressa</i>) in patients with nonresectable adrenocortical carcinoma	VEGFR	NCT00215202	This phase II trial investigates the effect of Iressa in patients with nonresectable adrenocortical cancer who have previously been treated with one other form of systemic therapy (either Mitotane or chemotherapy).	Completed
Phase II Study of Axitinib (AG-013736) With Evaluation of the VEGF-Pathway in Metastatic, Recurrent or Primary Unresectable Adrenocortical Cancer	Multikinase (i) VEGFR (ii) PDGFR (iii) KIT	NCT01255137	To evaluate the effectiveness of axitinib in individuals who have adrenocortical cancer that is inoperable and has not responded to standard treatments	Recruiting
Sunitinib in Refractory Adrenocortical Carcinoma (SIRAC)	Multikinase (i) VEGFR (ii) PDGFR (iii) KIT	NCT'00453895	The primary objective of this trial is to estimate the response (defined as progression-free survival of ≥12 weeks) rate associated with Sunitinib treatment in patients advanced ACC progressing after cytotoxic chemotherapy	Unknown
Sorafenib Plus Paclitaxel in adreno-cortical-cancer patients (PAXO)	Multikinase (i) RAF (ii) VEGFR (iii) PDGFR (iv) KIT	NCT00786110	The aim of this phase II trial is to evaluate the clinical benefit and toxicity of the combination of Sorafenib plus metronomic chemotherapy in patients with locally advanced or metastatic ACC who progressed after first or second line chemotherapy.	Unknown
Clinical trial of <i>Dovitinib</i> in first-line metastatic or locally advanced non-resectable adrenocortical carcinom	FGFRs	NCT01514526	Non-randomized, phase II clinical trial, that investigates the use of Dovitinib in adult patients with metastatic or locally advanced non-resectable adrenocortical carcinoma, confirmed histologically	Recruiting
Cixutumumab in treating patients with relapsed or refractory solid tumors	IGF1R	NCT00831844	Phase II trial that studies the side effects and how well cixutumumab works in treating patients with relapsed or refractory solid tumors, including ACC	Recruiting

Adrenocortical Carcinoma: Current Therapeutic State-of-the-Art Journal of Oncology Amir H. Lebastchi, John W. Kunstman, and Tobias Carling

Journal of Oncology Volume 2012, Article ID 234726, 11 pages dot:10.1155/2012/234726

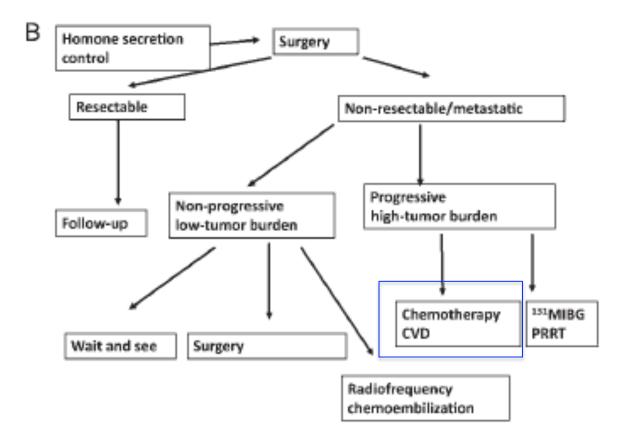
Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale School of Medicine, .

Suspected diagnosis Confirmatory test Pheochromocytoma Plasma metanephrines Diagnostic test 24-h urine metanephrines. Clonidine suppression test. MRI may be considered in some selected cases Preoperative managment α -Blocker +/- β -blocker +/calcium channel blocker. Additional imaging studies as clinically indicated.

Postoperative management

Monitor blood pressure and glucose levels. Intravenous fluid to treat hypotension. Discontinue or adjust antihypertensive therapy.

Table 2. — Chemotherapy Trials for Treating Malignant Pheochromocytoma


Trial	Year	No. of Patients	Median Survival (mos)*	Biochemical Response Rate (%)	Radiologic Response Rate (%)	Chemotherapy Regimen
Nomura et al ²¹	2009	19	216	52	N/D	CVD
Huang et al ²²	2008	18 **	78	72	56	CVD
Rao et al ²³	2000	9	N/D	56	N/D	CVD
Patel et al ²⁴	1995	13	67	N/D	46	CDD
Averbuch et al ²⁵	1988	14 **	65	79	57	CVD

CVD = cyclophosphamide, vincristine, and dacarbazine, CDD = cyclophosphamide, doxorubicin, and dacarbazine, N/D = no data.

* No study has shown an overall survival benefit with any chemotherapy regimen.

** The 2008 study by Huang et al²² is a 22-year follow-up by the National Institutes of Health of the original study published by Averbuch et al²⁵ in 1988.

ESMO 2012

Changing Paradigms in the Treatment of Malignant Pheochromocytoma

Raymon H. Grogan, MD, Elliot J. Mitmaker, MD, and Quan-Yang Duh, MD

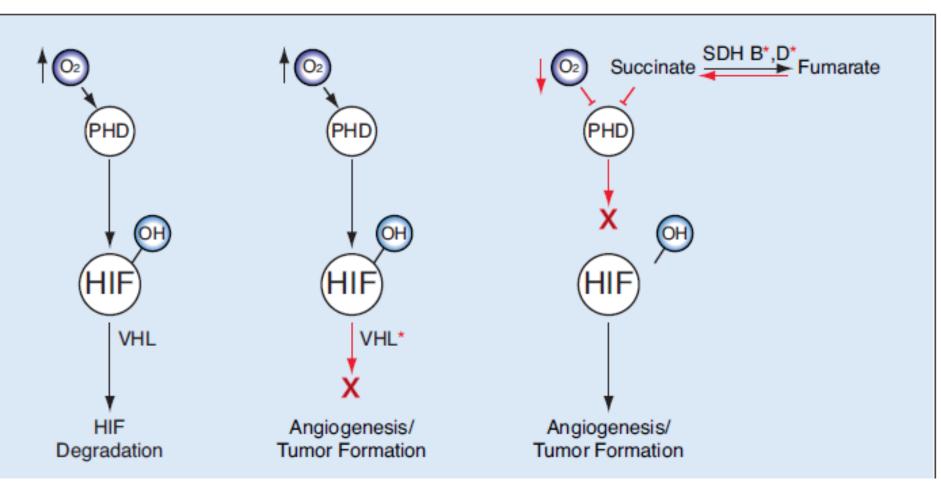
104 Cancer Control

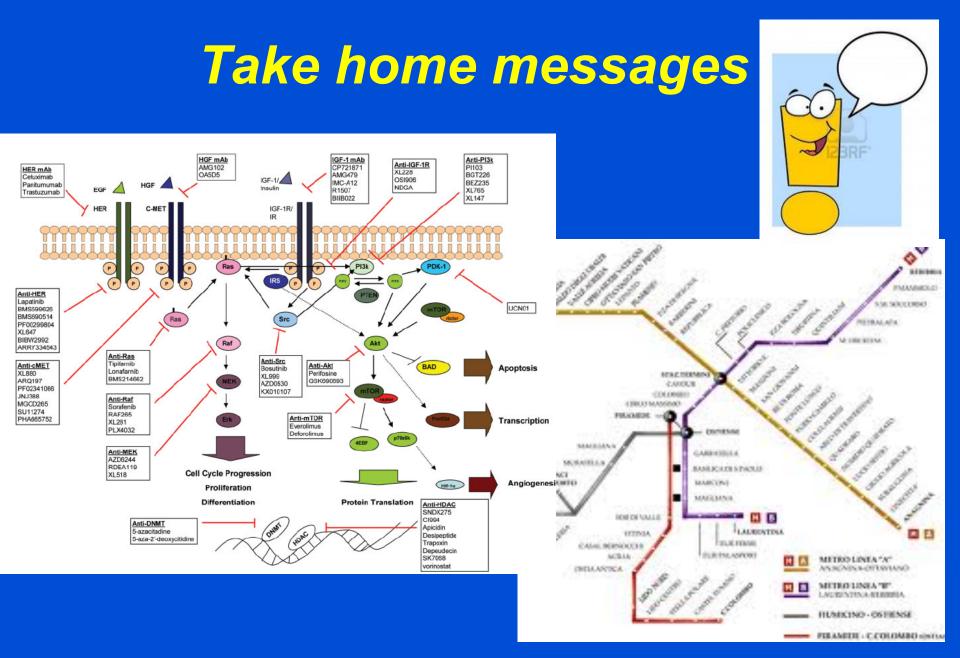
April 2011, Vol 18, No. 2

Gene	Chromosome	Exon	Protein	Germline Mutation Rate (%)*	Malignancy Rate (%)
VHL 6-8	3p25-26	3	pVHL19 and pVHL30	2–11	5
SDHB 6,7,9,10	1p36.13	8	Catalytic iron-sulfur protein	3–10	50
SDHD 6,7,9,10	11q23	4	CybS (membrane-spanning subunit)	4–7	< 3
RET 6.7	10q11.2	21	Tyrosine-kinase receptor	< 5	3
NF17	17q11.2	59	Neurofibromin	Unknown	11
KIF1BBeta ¹¹	1p36.2	41	Kinesin family member 1B (microtubule motor)	Unknown	Unknown

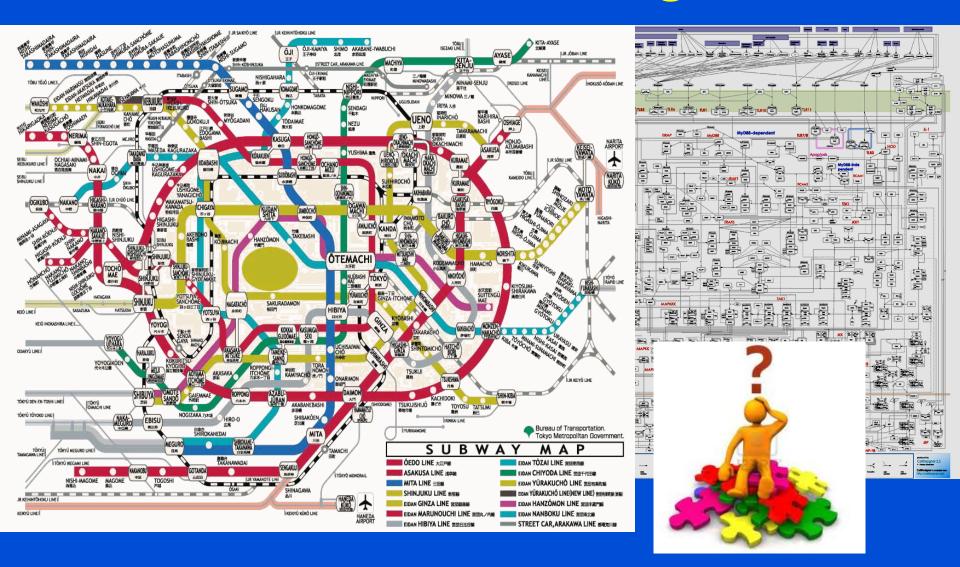
Table 1. — Gene Mutations Associated With Malignant Pheochromocytoma and Paraganglioma

* The rate of germline mutations found in apparently sporadic mutations. Dotted line separates the HIF pathway mutations (above) from the RNA regulation pathway (below). Reprinted from the *Lancet*, Vol. No. 366(9486), Lenders JW, Eisenhofer G, Mannelli M, et al. Phaeochromocytoma; pages 665-675. Copyright © 2005, with permission from Elsevier.




Figure. — Three HIF pathway mutations are associated with pheochromocytoma. The HIF protein regulates cellular responses to oxygen tension by acting as a transcriptional regulator for multiple proangiogenic factors. Under normal normoxic conditions, HIF is hydroxylated by PHDs allowing it to be degraded by a VHL-mediated process (left). Mutations of VHL prevent HIF degradation, causing increased HIF accumulation, unregulated angiogenesis, and tumor formation (middle). Mutations of SDHB and SDHD genes cause succinate to accumulate. Excess succinate prevents PHDs from hydroxylating HIF, which also leads to HIF accumulation, activation, and tumor formation. Under normal hypoxic conditions HIF is activated via the PHD pathway to promote angiogenesis (right). VHL = von Hippel-Lindau, PHD = prolyl hydroxylase domain, HIF = hypoxia-inducible factor, SDHB = succinate dehydrogenase B subunit gene, SDHD = succinate dehydrogenase D subunit gene.

Reference	Molecular Target	Potential Targeted Therapy	Trial Phase
Kulke et al ⁵⁴	Vascular endothelial growth factor (VEGF)	Thalidomide	1/11
Kulke et al ⁵⁴	Basic fibroblast growth factor (bFGF)	Thalidomide	1/11
Gross et al ^{s6} Joshua et al ^{s8} Jimenez et al ⁶⁰	Receptor tyrosine kinase (RTK): KIT, PDGF-R, and ABL VEGF, PDGFR-β, c-KIT, FLT3, and RET	Imatinib mesylate Sunitinib	1/11
Yao et al ³⁸ Druce et al ⁴³	Mammalian target of rapamycin (mTOR)	Everolimus (RAD001)	1/11
Welsh et al ^{45,46}	Hypoxia-inducible factor 1-alpha (HIF-1α)	PX-478 PX-12	N/A
Choi et al ⁴⁷ Temes et al ⁴⁸	Prolyl hydroxylase	KRH102053 R59949	N/A
Saeger et al ⁶¹	ERBB-2 (HER-2/neu)	Trastuzumab	N/A


Table 3. — Molecular Targets and Current (or Potential) Cytostatic Therapies for Malignant Pheochromocytomas or Paragangliomas

Take home messages

Take home messages

Thank-you

Lago Di Albano