

ROMA

JOVEN

ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

ENDOCRINOLOGIA ONCOLOGICA (2)

Gestione delle terapie biologiche nei pazienti con NET

Moderatori

F. Grimaldi, G. Lombardi

- Ottimizzazione della terapia con gli analoghi della somatostatina *R. Baldelli*
- Caso clinico e discussione
 M.V. Davi
- L'inibizione di mTOR come terapia mirata per i pazienti con NET Caso clinico e discussione *P. Ferolla*
- Come si integrano le terapie biologiche con le altre terapie disponibili? *F. Riccardi*
- Caso clinico e discussione
 M.V. Davi
- Nuove prospettive nei NET D. Ferone
- Take-home messages F. Grimaldi

Ottimizzazione della terapia con analoghi della somatostatina

1° CORSO NAZIONALE DI AGGIORNAMENTO

IPER[CORSI]AME

Roberto BALDELLI M.D., Ph.D.

"Regina Elena" Italian National Cancer Institute, Rome Unit of Endocrinology

Neuroendocrine dispersed cells

Unità Operativa di Endocrinologia ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

Yao et al., 35.825 cases from SEER, JCO Jun 2008

Unità Operativa di Endocrinologia REGINA ELENA

íRE

Cromogranina A

Sinaptofisina

Cromogranina A

Sinaptofisina

Therapy of neuroendocrine tumors

• Surgery

- Biotherapy:
- Somatostatin analogs
- α**-interferon**
- Chemotherapy
- Targeted therapy:
- mTOR inhibitor/modulators
- EGFR inhibitors
- Inhibitors of angiogenesis
- Loco-regional treatments

•New molecules for PRRT

Definition

Do we share the same definition of a neuroendocrine tumor (NET) ?

I will use Google before asking dumb questions. www.mrburns.nl before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions

Cumulative survival of patients according to WHO classification

 Table 4 Grading proposal for foregut (neuro)endocrine tumors

Grade	Mitotic count (10 HPF) ^a	Ki-67 index (%) ^b
G1	<2	≤2
G2	2–20	3-20
G3	>20	>20

^a10 HPF: high power field=2 mm², at least 40 fields (at 40× magnification) evaluated in areas of highest mitotic density ^bMIB1 antibody; % of 2,000 tumor cells in areas of highest nuclear labeling

How we can better treat these patients today ??

- 1. Better knowledge on the tumor biology
- 2. New drugs
- 3. Possibility of randomized trials
- 4. Novel technologies (PRRT, loco-regional treatment)

Medical Therapy

ENETS Guidelines

Neuroendocrinology 2009;90:209–213 DOI: 10.1159/000183751

-endocrinology

ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Biotherapy

Kjell Öberg^a Diego Ferone^b Gregory Kaltsas^c Ulrich-Peter Knigge^d Babs Taal^e Ursula Plöckinger^f and all other Mallorca Consensus Conference participants

Which is the correct choice of treatment?

Unità Operativa di Endocrinologia Istituto di Ricovero e cura a carattere scientifico

Which is the correct choice of treatment?

DEBULKING OF THE TUMOR MASS

SURGERY Radical Debulking Palliative

Which is the correct way of treatment?

and / or

INHIBITION OF HORMONE RELEASE AND GROWTH CONTROL

SURGERY Radical Debulking Palliative

DEBULKING OF THE

TUMOR MASS

MEDICAL THERAPY Somatostatin analogs Interferon Chemotherapy Chemoembolizzation Target Therapy

Which is the correct choice of treatment?

Unità Operativa di Endocrinologia Istituto di Ricovero e cura a carattere scientifico

4 end points

"Fantastic four"

Fantastic four

1. Sympthoms

Fantastic four

- 1. Sympthoms
- 2. Proliferation

Fantastic four

- 1. Sympthoms
- 2. Proliferation
- 3. Survival

Fantastic four

- 1. Sympthoms
- 2. Proliferation
- 3. Survival
- 4. QoL

Somatostatin analogs acvtivities

Control of hormone secretion and tumor growth

DIRECT ACTIVITIES

INDIRECT ACTIVITIES

- Block of the cell cycles
- Induction of apoptosis
- Inhibition of angiogenesis
- Activation of NK lymphocytes

Inhibition of growth factors release

Autocrine-paracrine circuits

	SSTR1	
Chromosome	14q13	
Amino acid sequences	391	
MAPK modulation	+	
(G-protein coupling)		
Signalling via tyrosine-	\uparrow	
phosphatase		
Effect on cAMP	\downarrow	
Functions	↓Angiogenesis ↑cell cycle arrest)

STREET, OTHER

Grozinsky-Glasberg et al. Endocrine-Related Cancer (2008)

Unità Operativa di Endocrinologia

17q24 369	
369	
+	
↑	
\downarrow	
↓Hormonal secretion ↑cell cycle arrest	
	369 + ↑ ↓ Hormonal secretion ↑ cell cycle arrest

istituto NAZIONALE TUMORI REGINA ELENA

Grozinsky-Glasberg et al. Endocrine-Related Cancer (2008)

Unità Operativa di Endocrinologia ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

	SSTR1	SSTR2	SSTR3
Chromosome	14q13	17q24	22q13.1
Amino acid sequences	391	369	418
MAPK modulation (G-protein coupling)	+	+	+
Signalling via tyrosine- phosphatase	↑	↑	↑
Effect on cAMP	\downarrow	\downarrow	\downarrow
Functions	↓Angiogenesis ↑cell cycle arrest	↓Hormonal secretion ↑cell cycle arrest	↑ apoptosis

Grozinsky-Glasberg et al. Endocrine-Related Cancer (2008)

	SSTR1	SSTR2	SSTR3	SSTR4
Chromosome	14q13	17q24	22q13.1	20p11.2
Amino acid sequences	391	369	418	388
MAPK modulation (G-protein coupling)	+	+	+	+
Signalling via tyrosine- phosphatase	↑	↑	↑	Ť
Effect on cAMP	\downarrow	\downarrow	\downarrow	\downarrow
Functions	↓Angiogenesis ↑cell cycle arrest	↓Hormonal secretion ↑cell cycle arrest	↑apoptosis	↑ cell cycle arrest

di Endocrinologia

Grozinsky-Glasberg et al. Endocrine-Related Cancer (2008)

Unità Operativa di Endocrinologia ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Chromosome	14q13	17q24	22q13.1	20p11.2	16p13.3
Amino acid sequences	391	369	418	388	363
MAPK modulation (G-protein coupling)	+	+	+	+	+
Signalling via tyrosine- phosphatase	↑	↑	↑	↑	↑
Effect on cAMP	\downarrow	\downarrow	\downarrow	\downarrow	
Functions	↓Angiogenesis ↑cell cycle arrest	↓Hormonal secretion ↑cell cycle arrest	↑apoptosis	↑ cell cycle arrest	↓Hormonal secretion ↑cell cycle arrest

Grozinsky-Glasberg et al. Endocrine-Related Cancer (2008)

Unita Operativa di Endocrinologia istituto di ricovero e cura a carattere scientifico

íRE

Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives

Marialuisa Appetecchia^{*}, Roberto Baldelli

Journal of Experimental & Clinical Cancer Research 2010, 29:19

Receptor subtype affinity [IC50, nM] Compound SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 SMS-14 2.26 0.23 1.43 0.88 1.77 SMS-28 1.85 0.31 1.3 ND 0.4 Octreotide 1140 0.56 34 7030 7 5.2 Lanreotide 2330 0.75 107 2100

Somatostatin receptor subtype-binding affinity of somatostatin analogues

SMS, Somatostatin; ND, not determined.

[Data from Grozinsky-Glasberg S., Endocrine-Related Cancer 2008 Sep;15 [3]:701-20].

Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives

Marialuisa Appetecchia^{*}, Roberto Baldelli

Journal of Experimental & Clinical Cancer Research 2010, 29:19

Somatostatin receptor subtypes mRNA in neuroendocrine tumours

Tumor	SSTR1	SSTR2	SSTR3	SSTR4	SSTR5
Gastrinoma	79% ^a	93%	36%	61%	93%
Insulinoma	76%	81%	38%	58%	57%
N-F	58%	88%	42%	48%	50%
Carcinoid (gut)	76%	80%	43%	68%	77%

SST, somatostatin receptor; N-F, Non functioning;^a Indicates the percentage of positive tumours for each sst. mRNA expression may overestimate the number of receptors present, depending on the technique used [PR-polymerase chain reaction, Northern blot, in-situ hybridization].

[Data from Plöckinger U. Biotherapy. Best Practice & Research Clinical Endocrinology & Metabolism 2007; Vol. 21, No. 1, pp. 145-162]

Unità Operativa di Endocrinologia ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Biotherapy

Neuroendocrinology 2009;90:209–213 DOI: 10.1159/000183751

Kjell Öberg^a Diego Ferone^b Gregory Kaltsas^c Ulrich-Peter Knigge^d Babs Taal^e Ursula Plöckinger^f and all other Mallorca Consensus Conference participants

Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours

I. M. MODLIN*, M. PAVEL†, M. KIDD* & B. I. GUSTAFSSON‡,§

Aliment Pharmacol Ther 31, 169–188 2009

".. In a review of 15 studies including 481 patients, the slow-release formulations Sandostatin LAR and Somatuline SR Autogel

achieved symptomatic relief in: 74.2% (61.9–92.8%) and 67.5% (40.0–100%).

Unità Operativa di Endocrinologia

Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours

I. M. MODLIN*, M. PAVEL†, M. KIDD* & B. I. GUSTAFSSON‡,§

Aliment Pharmacol Ther 31, 169–188 2009 (b) Biochemical response (PR + CR) (51.4)(37)"...In a review of 15 100 -(50.9)studies including 481 (45)Percentage response patients, the slow-release 75 • (39.0)(55.0)(40.7)(55) formulations Sandostatin LAR and 50 Somatuline SR Autogel 25 OCT OCT LAR LAN LAN SR + AG biochemical response in Studies n = 10n = 2n = 4n = 951.4% (31.5–100%) and Patients n = 315n = 73n = 49n = 33339.0% (17.9–58%).

Unità Operativa di Endocrinologia

Alimentary Pharmacology & Therapeutics

Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours

I. M. MODLIN*, M. PAVEL†, M. KIDD* & B. I. GUSTAFSSON‡,§

Aliment Pharmacol Ther 31, 169–188 2009

"..In a review of 15 studies including 481 patients, the slow-release formulations Sandostatin LAR and Somatuline SR Autogel

tumour response in 69.8% (47.0–87.5%) and 64.4% (48.0–87.0%).

Unità Operativa di Endocrinologia

JOURNAL OF CLINICAL ONCOLOGY

Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group

Anja Rinke, Hans-Helge Müller, Carmen Schade-Brittinger, Klaus-Jochen Klose, Peter Barth, Matthias Wied, Christina Mayer, Behnaz Aminossadati, Ulrich-Frank Pape, Michael Bläker, Jan Harder, Christian Arnold, Thomas Gress, and Rudolf Arnold

ITT analysis

N=2

Conservative ITT

Analysis

N=42

Unità Operativa di Endocrinologia Istituto di Ricovero e cura a carattere scientifico

REGINA ELENA

JOURNAL OF CLINICAL ONCOLOGY

Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group

Anja Rinke, Hans-Helge Müller, Carmen Schade-Brittinger, Klaus-Jochen Klose, Peter Barth, Matthias Wied, Christina Mayer, Behnaz Aminossadati, Ulrich-Frank Pape, Michael Bläker, Jan Harder, Christian Arnold, Thomas Gress, and Rudolf Arnold

	Octreotide LAR (n=42)	Placebo (n=43)			
Complete response (n)	0	0			
Partial response (n)	1	1			
Stable disease (n)	28	16			
Progressive disease (n)	10	23			
Unknown (n)	3	3			

Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group

Anja Rinke, Hans-Helge Müller, Carmen Schade-Brittinger, Klaus-Jochen Klose, Peter Barth, Matthias Wied, Christina Mayer, Behnaz Aminossadati, Ulrich-Frank Pape, Michael Bläker, Jan Harder, Christian Arnold, Thomas Gress, and Rudolf Arnold

Patients with tumor load $\leq 10\%$

Octreotide LAR: 32 patients / 18 events Median TTP 27.14 months

Placebo: 32 patients / 31 events Median TTP 7.21 months

Patients with tumor load >10%

Based on the ITT analysis

Unità Operativa di Endocrinologia ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

0.25

0

JOURNAL OF CLINICAL ONCOLOGY

Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group

Anja Rinke, Hans-Helge Müller, Carmen Schade-Brittinger, Klaus-Jochen Klose, Peter Barth, Matthias Wied, Christina Mayer, Behnaz Aminossadati, Ulrich-Frank Pape, Michael Bläker, Jan Harder, Christian Arnold, Thomas Gress, and Rudolf Arnold

In vivo evaluation of anti-tumoral activity of octreotide

85 patients with metastatic NET of the midgut (functionally active and inactive tumors)

RESULTS

Median Time to Progression: • Octreotide 14.3 months • Placebo 6 months

Stable disease after 6 months in: • 66.7% in the octreotide group • 37.2 in the placebo group

Because of the low number of observed deaths, survival analysis was not confirmatory

Octreotide LAR significantly lengthens time to tumor progression compared with placebo

Shortened interval of octreotide long acting

- 1. In patients with well differentiated neuroendocrine NET, Octreotide LAR 30 mg every 28 days, has welldocumented anti-secretive effects but limited antiproliferative effects.
- 2. Shortened schedule has been evaluated.

Ferolla P. et al., J Endocrinological Inv. 35; 326-331, 2012

Shortened interval of octreotide long acting

Objective of the study of days

evaluate a different schedule OCT-LAR 30 mg every 21

Patients

28 pts. with WDNET

Ferolla P. et al., J Endocrinological Inv. 35; 326-331, 2012

Unità Operativa di Endocrinologia Istituto di Ricovero e cura a carattere scientifico

Shortened interval of octreotide long acting

Treatment with OCT LAR 30 mg every 21 days

Median TTP was significantly longer using the shortened interval (21 days) compared to standard (28 days)

Ferolla P. et al., J Endocrinological Inv. 35; 326-331, 2012

Shortened interval of octreotide LAR administration is effective in patients with well differentiated neuroendocrine carcinomas in progression on standard doses

P. FEROLLA^{1#}, A. FAGGIANO^{2#}, F. GRIMALDI³, D. FERONE⁴, G. SCARPELLI¹, V. RAMUNDO⁵, R. SEVERINO⁵, M.C. BELLUCCI¹, L.M. CAMERA⁶, G LOMBARDI⁵, G. ANGELETTI¹ AND A. COLAO⁵ J. Endocrinol. Invest. First published ahead of print July 13, 2011 as DOI: 10.3275/7869

Figure 1: Time to tumor progression in 28 patients treated with octreotide LAR 30 mg every 28

days (point line) and octreotide LAR 30 mg every 21 days (dashed line) (p<0.0001).

Unità Operativa di Endocrinologia Istituto di Ricovero e cura a carattere scientifico

High dose treatment with SSA

- It was suggested that higher than usual dose of somatostatin analogues treatments (>3,000 μg/day) may promote the anti-proliferative effect.
- 2. In responding patients was observed an induction of **apoptosis** in the tumours, a phenomenon not seen with regular doses of somatostatin analogs.

High dose treatment with SSA

Response	Standard doses of octreotide (100–1,500 µg/day)	Slow release lanreotide (30 mg/14 day i.m.)	High dose lanreotide (9–15 mg/day)
Symptomatic	146/228 (64)	34/66 (52)	11/26 (42)
Biochemical			
CR	6/54 (11)	2/80 (2.5)	1/33 (3)
PR	116/211 (55)	35/80 (44)	24/33 (72)
SD	NS	32/80 (40)	7/33 (21)
PD	NS	11/80 (13.5)	1/33 (3)
Radiological			
CR	_	_	1/53 (2)
PR	7/131 (5)	2/42 (5)	6/53 (11)
SD	50/131 (38)	32/42 (76)	25/53 (47)
PD	74/131 (56)	8/42 (19)	21/53 (39)

Figures represent numbers with the percentage in parentheses. CR = Complete response; PR = partial response; SD = stable disease; PD = progressive disease; NS = not indicated.

Oberg, Chemotherapy 2001;47(suppl 2):40–53

CAUSES OF "FAILURE" OF THERAPY WITH SSA

1. down-regulation of SSR

2. heterogeneous expression of SSR, and/or selection of SSRnegative cell clones during chronic treatment

3. expression of SSR subtypes with low affinity for the ligand

NEW OPTIONS OF THERAPY

NEW OPTIONS OF THERAPY

DOPASTATIN

Expression of Somatostatin and Dopamine 2 Receptors in Neuroendocrine Tumours and the Potential Role for New Biotherapies

R. Srirajaskanthan^a J. Watkins^b L. Marelli^a K. Khan^a M.E. Caplin^a

	Low grade	Interme- diate grade	High grade	Total
Male	16	5	4	25
Female	13	13	5	31
Total	29	18	9	56
Median age, years	60	62	44.5	56.5
	(18–78)	(22-75)	(34-80)	(18-80)
Location of primary				
Foregut	9	6	5	20
Midgut	17	7	1	25
Hindgut and ovarian	1	2	1	4
Unknown	2	3	2	7

Neuroendocrinology 2009;89:308-314

ISTITUTO NAZIONALE TUMORI REGINA ELENA

Unità Operativa di Endocrinologia Istituto di Ricovero e cura a carattere scientifico

Expression of Somatostatin and Dopamine 2 Receptors in Neuroendocrine Tumours and the Potential Role for New Biotherapies

R. Srirajaskanthan^a J. Watkins^b L. Marelli^a K. Khan^a M.E. Caplin^a

- 1.D2R is expressed in the majority of low and intermediate grade tumours.
- 2.It is co-expressed with SSTR-2 and SSTR-5 in the majority of cases.
- 3. The advent of new chimeric molecules that bind both somatostatin and dopamine receptors may provide a new therapeutic option in the management of neuroendocrine patients.

Neuroendocrinology 2009;89:308-314

NEW OPTIONS OF THERAPY

RADIOMETABOLIC TREATMENT

Radiometabolic treatment and NET

Endocrine-Related Cancer (2005) 12 683-699

Figure 2 Chemical structure of currently used octreotide-based radiopharmaceuticals for the treatment of gastroenteropancreatic and other neuroendocrine tumours (OctreotherTM = 90 Y-SMT487 = 90 Y-DOTATOC).

Radio-metabolic treatment and NET

Endocrine-Related Cancer (2005) 12 683-699

 Table 4 Tumour responses and side-effect profile of treatment using various radiopharmaceuticals based on somatostatin analogues in patients with GEP tumours

		No. of		Tumour response			
Radiopharmaceutical	ical Reference	patients	CR/PR	SD	PD	Toxicity*	
¹¹¹ In	Valkema <i>et al.</i> 2002 Anthony <i>et al.</i> 2002	26 26	0 2 (8%)	16 (61%) 21 (81%)	10 (38%) 3 (12%)	3 (11%) AML/MDS 11 grades 3–4 haematologic, 3 liver, 1 renal	
⁹⁰ Y	Buscombe <i>et al.</i> 2003 Waldherr <i>et al.</i> 2001 Waldherr <i>et al.</i> 2002	16 74	5 (31%) 18 (24%)	7 (23%) 48 (65%)	4 (25%) 8 (11%)	– 8% grades 3–4 1 renal	
	Valkema <i>et al.</i> 2003	54	4 (7%)	40 (74%)	10 (19%)	38% grades 3–4 haematological, 1MDS, 1 liver, 1 renal	
¹⁷⁷ Lu	Bodei <i>et al.</i> 2004 <i>b</i> Kwekkeboom <i>et al.</i> 2005	141 131	(26%) 35 (28%)	(55%) 68 (54%)	(18%) 22 (18%)	Up to 1.5% grade 3 haematological, 1 liver, 1 renal	

CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease;

AML: acute myeloid leukaemia; MDS: myelodysplastic syndrome.

*Assessment followed WHO criteria (grades 3-4 toxicity is presented only).

TAKE HOME MESSAGES

SMS receptor profile characterization is crucial for the accurate selection of patients potentially responsive to a given treatment schedule with somatostatin analogs

SMS analogs are effective in symptoms, biochemical markers and tumor progression control

The shortened schedule of administration is able to control clinical symptoms, to decrease biochemical markers and to increase TTP in patients previous escape from standard schedule treatment

Somatostatin and dopamine receptor crosstalk at membrane level may trigger alternative intracellular pathways or enhance the signaling for the control of cell growth, however further studies are warranted

The new somatostatin analogs (pasireotide) with a wider and different spectrum of activities might increase the employment of medical therapy in the management of NET

ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO

ENDOCRINOLOGY Unit

Appetecchia Marialuisa

Baldelli Roberto Barnabei Agnese Rota Francesca Paoloni Antonella Adinolfi Valerio

TUMORI NET GEP

SEGRETERIA SCIENTIFICA Marialuisa Appetecchia, Roberto Baldelli, Agnese Barnabei Unità Operativa di Endocrinologia - Istituto Nazionale Tumori Regina Elena

STITUTO NAZIONALE TUMORI REGINA ELENA

Coordinatore scientifico Marialuisa Appetecchia ROMA 2012 24 novembre

Aller T.

BY BILL ASJONDN WITH APOLDOTES TO WE SESTE IN CORNER ON ENDAVED Deer VITT ANY & ELSS, Deer SWALT 2WELDER, WALLACE WOLDDAYSAT, ORE DANKELS DAVE MORTHLOEDROG MEYERSEFF MARTIN BRAD BUR AND MATTIGERING.

GRAZIE PER L'ATTENZIONE